Suppr超能文献

评估各种实验条件以及机械性静态与动态模型,以预测药物随时间变化的CYP3A4/5抑制潜力。

Evaluation of various experimental conditions and mechanistic static versus dynamic models to predict time-dependent CYP3A4/5 inhibition potential of drugs.

作者信息

Justine Badée, Helen Gu, Felix Huth, Birk Poller, Hilmar Schiller, Gaëlle Chenal, Judith Streckfuss, Bertrand-Luc Birlinger, Sujal Deshmukh, Heidi Einolf J

机构信息

PK Sciences, Biomedical Research, Novartis, Basel, Switzerland.

PK Sciences, Biomedical Research, Novartis, East Hanover, New Jersey.

出版信息

Drug Metab Dispos. 2025 Aug;53(8):100117. doi: 10.1016/j.dmd.2025.100117. Epub 2025 Jun 27.

Abstract

The use of mechanistic static and dynamic physiologically based pharmacokinetic (PBPK) models by incorporating CYP3A4/5-mediated time-dependent inhibition (TDI) parameters from human liver microsomes (HLM) can potentially give rise to significant overprediction of drug-drug interactions (DDI) caused by TDI, which may result in conducting unnecessary clinical DDI trials. This work aimed to evaluate the predictive performance of mechanistic static and dynamic PBPK models employed to predict the likelihood and the magnitude of clinical DDI caused by drugs with in vitro CYP3A4/5 TDI parameters measured in HLM and human hepatocytes (HHEPs). We examined the effect of differences in in vitro CYP3A4/5 TDI parameters such as the inhibition constant (total or unbound) in experimental conditions (supplementation of glutathione in HLM incubations or plasma in HHEP incubations) on the magnitude of predicted DDI risk in comparison to clinical results. In mechanistic static models, the average unbound organ exit concentrations and the maximum organ entry concentrations were compared for projecting DDI risks. Model performance was assessed using false-negative rates and negative predictive errors for a cutoff value of either 1.25- or 2-fold change in midazolam exposure. DDI caused by CYP3A4/5-mediated TDI was reliably predicted using mechanistic static model with average unbound organ exit concentrations or dynamic PBPK modeling, yielding less marked overpredictions of DDI. Models using in vitro inhibition constant corrected for incubation unbound fraction generated in either HLM or HHEP buffer incubations showed best statistical performance while maintaining high prediction accuracy and precision. SIGNIFICANCE STATEMENT: CYP3A4/5 time-dependent inhibition can lead to drug-drug interactions. CYP3A4 time-dependent inhibition parameters for 15 drugs, known as in vitro time-dependent inhibitors, were measured using various experimental conditions. These data were used in mechanistic static and physiologically based pharmacokinetic models to predict drug-drug interactions and identify false positives from in vitro experiments.

摘要

通过纳入来自人肝微粒体(HLM)的CYP3A4/5介导的时间依赖性抑制(TDI)参数来使用机械静态和动态生理药代动力学(PBPK)模型,可能会导致对TDI引起的药物相互作用(DDI)的显著过度预测,这可能会导致进行不必要的临床DDI试验。这项工作旨在评估机械静态和动态PBPK模型的预测性能,这些模型用于预测由在HLM和人肝细胞(HHEP)中测量的具有体外CYP3A4/5 TDI参数的药物引起的临床DDI的可能性和程度。我们研究了体外CYP3A4/5 TDI参数的差异(如实验条件下的抑制常数(总或未结合),HLM孵育中补充谷胱甘肽或HHEP孵育中补充血浆)对预测的DDI风险程度的影响,并与临床结果进行比较。在机械静态模型中,比较平均未结合器官出口浓度和最大器官入口浓度以预测DDI风险。使用咪达唑仑暴露变化1.25倍或2倍的截断值,通过假阴性率和阴性预测误差评估模型性能。使用平均未结合器官出口浓度的机械静态模型或动态PBPK模型能够可靠地预测由CYP3A4/5介导的TDI引起的DDI,对DDI的过度预测不那么明显。使用在HLM或HHEP缓冲液孵育中产生的孵育未结合分数校正的体外抑制常数的模型显示出最佳的统计性能,同时保持高预测准确性和精度。重要声明:CYP3A4/5时间依赖性抑制可导致药物相互作用。使用各种实验条件测量了15种已知为体外时间依赖性抑制剂的药物的CYP3A4时间依赖性抑制参数。这些数据被用于机械静态和生理药代动力学模型中,以预测药物相互作用并识别体外实验中的假阳性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验