Suppr超能文献

使用比较机器学习模型预测糖尿病足溃疡的大截肢风险以加强临床决策

Predicting major amputation risk in diabetic foot ulcers using comparative machine learning models for enhanced clinical decision-making.

作者信息

Liu Zixuan, Wei Dehua, Wang Jiangning, Gao Lei

机构信息

Orthopedic Department, Capital Medical University Affiliated Beijing Shijitan Hospital, No. 10 Yangfangdian Tieyi Road, Haidian District, Beijing, China.

出版信息

Sci Rep. 2025 Aug 1;15(1):28103. doi: 10.1038/s41598-025-13534-x.

Abstract

It is to develop a predictive model utilizing machine learning techniques to promptly identify patients with diabetic foot ulcers (DFU) who may require major amputation upon their initial admission. A total of 598 DFU patients were admitted to a tertiary hospital in Beijing. We employed synthetic minority oversampling technique to address the class imbalance of the target variable in the original dataset. A Lasso regularization analysis identified 17 feature variables for inclusion in the model: age, diabetes duration, wound size, history of peripheral neuropathy, history of atrial fibrillation, white blood cell count, C-reactive protein (CRP), procalcitonin, glycated hemoglobin (HbA1c), myoglobin (Mb), troponin (Tn), blood urea nitrogen, serum albumin, triglycerides (TG), low-density lipoprotein cholesterol, multidrug-resistant infection, vascular intervention. Subsequently, risk prediction models were independently developed by using these feature variables based on six machine learning algorithms: logistic regression, random forest, support vector machine, K-nearest neighbors, gradient boosting machine (GBM), and extreme gradient boosting (XGBoost). The performance of six models was evaluated to select the best model for predicting the risk of major amputation. GBM was identified as the best predictive model (accuracy 0.9408, precision 0.9855, recall 0.8553, F1-score 0.9158, and AUC 0.9499). This model also highlights the importance ranking of feature variables associated with predicting the risk of major amputation, with the top five variables being the presence of multidrug-resistant infection, CRP, diabetes duration, Tn, age. It is an effective machine learning method that GBM model is used to predict the risk of major amputations in diabetic foot patients.

摘要

本研究旨在利用机器学习技术开发一种预测模型,以便在糖尿病足溃疡(DFU)患者首次入院时迅速识别出可能需要进行大截肢手术的患者。共有598例DFU患者入住北京一家三级医院。我们采用合成少数过采样技术来解决原始数据集中目标变量的类别不平衡问题。通过套索正则化分析确定了17个纳入模型的特征变量:年龄、糖尿病病程、伤口大小、周围神经病变史、心房颤动史、白细胞计数、C反应蛋白(CRP)、降钙素原、糖化血红蛋白(HbA1c)、肌红蛋白(Mb)、肌钙蛋白(Tn)、血尿素氮、血清白蛋白、甘油三酯(TG)、低密度脂蛋白胆固醇、多重耐药感染、血管介入。随后,基于逻辑回归、随机森林、支持向量机、K近邻、梯度提升机(GBM)和极端梯度提升(XGBoost)这六种机器学习算法,利用这些特征变量独立开发了风险预测模型。对六个模型的性能进行评估,以选择预测大截肢风险的最佳模型。GBM被确定为最佳预测模型(准确率0.9408,精确率0.9855,召回率0.8553,F1分数0.9158,曲线下面积0.9499)。该模型还突出了与预测大截肢风险相关的特征变量的重要性排名,排名前五的变量为多重耐药感染、CRP、糖尿病病程、Tn、年龄。使用GBM模型预测糖尿病足患者大截肢风险是一种有效的机器学习方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验