Huang Xiaozhou, Li Matthew, Gao Yanan, Park Moon Gyu, Matsuda Shoichi, Amine Khalil
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL, 60439, USA.
Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
Angew Chem Int Ed Engl. 2025 Sep 8;64(37):e202507967. doi: 10.1002/anie.202507967. Epub 2025 Aug 1.
Solid-state lithium oxygen batteries (LOBs) are known for their enhanced safety, higher electrochemical stability, and improved energy density compared to liquid-state LOBs. However, the investigation of solid-state LOBs is limited with little understanding of their discharge and charge processes. In this work, a polymer-based solid-state LOB is used to investigate the effect of discharge rate on lithium peroxide (LiO) formation, the oxygen evolution reaction (OER), and cycle performance. Notably, we observe a counterintuitive trend: LiO particle size increases with increasing discharge current density, in contrast to liquid systems. This behavior arises from inherent space charge layers that restrict Li⁺ transport under high current, and spatially heterogeneous active sites at the solid electrolyte-cathode interface, directly evidenced by small angle X-ray scattering (SAXS), which govern nucleation accessibility and promote site-selective LiO growth. Furthermore, higher current densities improve ORR and OER efficiency but accelerate anode degradation, while lower currents promote side reactions. These opposing effects result in a trade-off that defines an optimal discharge rate (0.1 mA cm⁻) for maximizing cycle life. This study provides a new mechanistic perspective on discharge-driven processes in solid-state LOBs and offers practical guidelines for performance optimization in future high-energy battery systems.
固态锂氧电池(LOBs)相较于液态锂氧电池,具有更高的安全性、更强的电化学稳定性以及更高的能量密度。然而,目前对固态锂氧电池的研究有限,对其充放电过程了解甚少。在这项工作中,我们使用了一种基于聚合物的固态锂氧电池来研究放电速率对过氧化锂(LiO)形成、析氧反应(OER)以及循环性能的影响。值得注意的是,我们观察到了一个与直觉相反的趋势:与液体系统不同,LiO颗粒尺寸随着放电电流密度的增加而增大。这种行为源于在高电流下限制Li⁺传输的固有空间电荷层,以及固体电解质 - 阴极界面处空间异质的活性位点,小角X射线散射(SAXS)直接证明了这一点,这些因素决定了成核的难易程度并促进了位点选择性的LiO生长。此外,较高的电流密度提高了氧还原反应(ORR)和析氧反应(OER)的效率,但加速了阳极降解,而较低的电流则促进了副反应。这些相反的影响导致了一种权衡,从而确定了一个最佳放电速率(0.1 mA cm⁻²)以最大化循环寿命。这项研究为固态锂氧电池中放电驱动过程提供了新的机理视角,并为未来高能电池系统的性能优化提供了实用指南。