Wang Longlong, Xie Ruicong, Chen Bingbing, Yu Xinrun, Ma Jun, Li Chao, Hu Zhiwei, Sun Xingwei, Xu Chengjun, Dong Shanmu, Chan Ting-Shan, Luo Jun, Cui Guanglei, Chen Liquan
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
Nat Commun. 2020 Nov 18;11(1):5889. doi: 10.1038/s41467-020-19726-5.
The space charge layer (SCL) is generally considered one of the origins of the sluggish interfacial lithium-ion transport in all-solid-state lithium-ion batteries (ASSLIBs). However, in-situ visualization of the SCL effect on the interfacial lithium-ion transport in sulfide-based ASSLIBs is still a great challenge. Here, we directly observe the electrode/electrolyte interface lithium-ion accumulation resulting from the SCL by investigating the net-charge-density distribution across the high-voltage LiCoO/argyrodite LiPSCl interface using the in-situ differential phase contrast scanning transmission electron microscopy (DPC-STEM) technique. Moreover, we further demonstrate a built-in electric field and chemical potential coupling strategy to reduce the SCL formation and boost lithium-ion transport across the electrode/electrolyte interface by the in-situ DPC-STEM technique and finite element method simulations. Our findings will strikingly advance the fundamental scientific understanding of the SCL mechanism in ASSLIBs and shed light on rational electrode/electrolyte interface design for high-rate performance ASSLIBs.
空间电荷层(SCL)通常被认为是全固态锂离子电池(ASSLIBs)中界面锂离子传输迟缓的原因之一。然而,硫化物基ASSLIBs中SCL对界面锂离子传输影响的原位可视化仍然是一个巨大的挑战。在此,我们通过使用原位差分相衬扫描透射电子显微镜(DPC-STEM)技术研究高压LiCoO/硫银锗矿LiPSCl界面上的净电荷密度分布,直接观察到由SCL导致的电极/电解质界面锂离子积累。此外,我们进一步展示了一种内置电场和化学势耦合策略,通过原位DPC-STEM技术和有限元方法模拟来减少SCL的形成并促进锂离子在电极/电解质界面的传输。我们的发现将显著推进对ASSLIBs中SCL机制的基础科学理解,并为高倍率性能ASSLIBs的合理电极/电解质界面设计提供启示。