Franz Juliana, Barbieri Fabian, Barink Marco, Groth Alexandra, Reinthaler Markus, Kasner Mario, Brüning Jan, Lavezzo Valentina, Waechter-Stehle Irina, Landmesser Ulf, Kuehne Titus, Goubergrits Leonid, Vellguth Katharina
Deutsches Herzzentrum der Charité, Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.
Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany; Helmholtz-Zentrum Hereon, Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Teltow, Germany.
Comput Biol Med. 2025 Sep;196(Pt B):110838. doi: 10.1016/j.compbiomed.2025.110838. Epub 2025 Aug 2.
Transcatheter edge-to-edge repair (TEER) is an effective treatment for mitral valve regurgitation in patients with high surgical risk, but predicting the hemodynamic outcomes is challenging. Reduced-order models (ROMs) show promise for post-TEER hemodynamic outcome predictions, but personalization of the ROM equations is essential for accurate simulations of mitral valve blood flow rates and pressure gradients during both diastole and systolic regurgitation. While the mitral valve orifice area is a common parameter used for ROM personalization, other aspects of the mitral valve shape are usually not considered. In this in-silico study, we investigated the influences of mitral valve shape on transmitral hemodynamics using a combination of computational fluid dynamics (CFD) simulations and geometrical analyses. Mitral valves from ten TEER patients were analyzed at three valve states: early diastole (pre- and post-TEER) and systolic regurgitation (pre-TEER). The orifice-to-annulus area ratio and the orifice orientation were identified as key shape parameters impacting mitral valve hemodynamics. Based on these findings, we developed shape-based ROM equations that are personalized using routine echocardiographic data. The ROM estimates agreed well with CFD simulation results (mean relative differences <1 % and limits of agreements <13 % for both flow rates and pressure gradients). Application of the ROM equations to patient-specific data revealed distinct hemodynamic differences between the three valve states, aligning with expectations from both physiological and fluid dynamics perspectives. Our results suggest that incorporating mitral valve shape parameters into ROMs could improve the accuracy of patient-specific simulations, thus enhancing their potential for supporting TEER planning and predicting intervention outcomes.
经导管缘对缘修复术(TEER)是治疗手术风险高的二尖瓣反流患者的有效方法,但预测血流动力学结果具有挑战性。降阶模型(ROM)在预测TEER术后血流动力学结果方面显示出前景,但ROM方程的个性化对于准确模拟舒张期和收缩期反流期间二尖瓣的血流速度和压力梯度至关重要。虽然二尖瓣口面积是用于ROM个性化的常见参数,但二尖瓣形状的其他方面通常未被考虑。在这项计算机模拟研究中,我们结合计算流体动力学(CFD)模拟和几何分析,研究了二尖瓣形状对跨二尖瓣血流动力学的影响。分析了10例接受TEER治疗患者的二尖瓣在三种瓣膜状态下的情况:舒张早期(TEER术前和术后)和收缩期反流(TEER术前)。瓣口与瓣环面积比和瓣口方向被确定为影响二尖瓣血流动力学的关键形状参数。基于这些发现,我们开发了基于形状的ROM方程,这些方程可使用常规超声心动图数据进行个性化。ROM估计值与CFD模拟结果吻合良好(流速和压力梯度的平均相对差异<1%,一致性界限<13%)。将ROM方程应用于患者特定数据揭示了三种瓣膜状态之间明显的血流动力学差异,这与生理学和流体动力学角度的预期一致。我们的结果表明,将二尖瓣形状参数纳入ROM可以提高患者特定模拟的准确性,从而增强其支持TEER规划和预测干预结果的潜力。