Suppr超能文献

基于深度学习的共聚焦显微镜下真菌性和棘阿米巴角膜炎分类

Deep learning-based classification of fungal and Acanthamoeba keratitis using confocal microscopy.

作者信息

Erukulla Rohith, Esmaili Kosar, Rahdar Amir, Aminizade Mehdi, Cheraqpour Kasra, Tabatabaei Seyed Ali, Bibak-Bejandi Zahra, Mohammadi Seyed Farzad, Yousefi Siamak, Soleimani Mohammad

机构信息

University of Illinois, College of Medicine, Chicago, IL, USA.

Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Ocul Surf. 2025 Jul 31;38:203-208. doi: 10.1016/j.jtos.2025.07.012.

Abstract

INTRODUCTION

Fungal and Acanthamoeba keratitis carry the worst prognoses among microbial keratitis (IK), owing to challenges in diagnosis and treatment. This study assesses the feasibility of deep learning (DL) to classify types of IK-fungal keratitis (FK), Acanthamoeba keratitis (AK), and nonspecific keratitis (NSK) (any other corneal inflammation)-and subtyping of FK using in vivo confocal microscopy.

METHODS

In this study, we employed transfer learning with a ResNet50 architecture to classify culture-confirmed keratitis types in a dataset of 1975 images (1137 FK, 457 AK, and 381 NSK) obtained from the Heidelberg Retinal Tomograph 3 (HRT 3). The dataset was split into training and testing sets. Data augmentation (e.g., rotation, zooming) was applied to the training subset to address class imbalance, and class weighting was used (5x for AK, 30x for NSK). Both models were trained for 150 epochs using the Adam optimizer with 5-fold cross-validation. Model 1 performed multi-class classification (FK, AK, NSK). Model 2 classified FK cases as either filamentous or non-filamentous.

RESULTS

Model 1 achieved a macro average accuracy of 87 % and a weighted average accuracy of 89 %. Precision and recall were high for AK (93 %, 96 %) and FK (90 %, 92 %), while NSK showed lower performance (78 %, 71 %). Model 2 demonstrated an accuracy of 85 % in subtyping FK, with an F1-score of 0.81 for filamentous and 0.85 for non-filamentous, an ROC AUC of 0.94, and a PR AUC of 0.95.

CONCLUSION

DL models can accurately classify IK and subtype FK, enhancing diagnostic accuracy and informing targeted treatment strategies.

摘要

引言

由于诊断和治疗方面的挑战,真菌性和棘阿米巴性角膜炎在微生物性角膜炎(感染性角膜炎)中预后最差。本研究评估了深度学习(DL)用于对感染性角膜炎的类型进行分类的可行性,这些类型包括真菌性角膜炎(FK)、棘阿米巴性角膜炎(AK)和非特异性角膜炎(NSK)(任何其他角膜炎症),并使用活体共聚焦显微镜对真菌性角膜炎进行亚型分类。

方法

在本研究中,我们采用具有ResNet50架构的迁移学习,对从海德堡视网膜断层扫描仪3(HRT 3)获得的1975张图像(1137张真菌性角膜炎、457张棘阿米巴性角膜炎和381张非特异性角膜炎)的数据集中经培养确诊的角膜炎类型进行分类。该数据集被分为训练集和测试集。对训练子集应用数据增强(如旋转、缩放)以解决类别不平衡问题,并使用类别加权(棘阿米巴性角膜炎为5倍,非特异性角膜炎为30倍)。两个模型均使用Adam优化器进行150个轮次的训练,并进行5折交叉验证。模型1进行多类别分类(真菌性角膜炎、棘阿米巴性角膜炎、非特异性角膜炎)。模型2将真菌性角膜炎病例分为丝状或非丝状。

结果

模型1的宏观平均准确率为87%,加权平均准确率为89%。棘阿米巴性角膜炎(93%,96%)和真菌性角膜炎(90%,92%)的精确率和召回率较高,而非特异性角膜炎的表现较低(78%,71%)。模型2在真菌性角膜炎亚型分类中的准确率为85%,丝状的F1分数为0.81,非丝状的F1分数为0.85,ROC曲线下面积为0.94,PR曲线下面积为0.95。

结论

深度学习模型可以准确地对感染性角膜炎进行分类并对真菌性角膜炎进行亚型分类,提高诊断准确性并为针对性治疗策略提供依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验