Suppr超能文献

基于分子表面曲率预测单克隆抗体中的聚集现象。

Prediction of aggregation in monoclonal antibodies from molecular surface curvature.

作者信息

Knez Benjamin, Erzin Lara, Kos Žiga, Kuzman Drago, Ravnik Miha

机构信息

Novartis LLC, Verovškova 57, 1000, Ljubljana, Slovenia.

Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia.

出版信息

Sci Rep. 2025 Aug 2;15(1):28266. doi: 10.1038/s41598-025-13527-w.

Abstract

Protein aggregation is one of the key challenges in the biopharmaceutical industry as its control is crucial in achieving long-term stability and efficacy of biopharmaceuticals. Attempts have been made to develop regression models for predicting the aggregation of monoclonal antibodies in solution using machine learning methods. These efforts have yielded varying levels of success, with current state-of-the-art AI approaches achieving good prediction accuracies ([Formula: see text]). Here, we demonstrate the prediction of aggregation rate in monoclonal antibodies with beyond state-of-the-art reliability using a coupled AI-MD-Molecular surface curvature modelling platform. The scientific novelty of this approach lies in using local geometrical surface curvature of proteins as the core element for protein stability analysis. By combining local surface curvature and hydrophobicity, as derived from time-dependent MD simulations, we are able to construct aggregation predictive features that, when coupled with linear regression machine learning techniques, give a high prediction accuracy ([Formula: see text]) on a dataset of 20 molecules. More generally, this approach shows significant potential for quantitative in silico screening and prediction of protein aggregation, which is of great scientific and industrial relevance, particularly in biopharmaceutics.

摘要

蛋白质聚集是生物制药行业面临的关键挑战之一,因为对其进行控制对于实现生物制药的长期稳定性和有效性至关重要。人们已尝试使用机器学习方法开发回归模型,以预测单克隆抗体在溶液中的聚集情况。这些努力取得了不同程度的成功,当前最先进的人工智能方法具有良好的预测准确性([公式:见正文])。在此,我们展示了使用耦合的人工智能 - 分子动力学 - 分子表面曲率建模平台,以超越当前技术水平的可靠性预测单克隆抗体的聚集速率。这种方法的科学新颖之处在于,将蛋白质的局部几何表面曲率用作蛋白质稳定性分析的核心要素。通过结合从随时间变化的分子动力学模拟得出的局部表面曲率和疏水性,我们能够构建聚集预测特征,当将其与线性回归机器学习技术相结合时,在一个包含20个分子的数据集上具有很高的预测准确性([公式:见正文])。更一般地说,这种方法在蛋白质聚集的定量计算机模拟筛选和预测方面显示出巨大潜力,这在科学和工业上都具有重要意义,特别是在生物制药领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40b/12317995/38507f5a768f/41598_2025_13527_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验