Suppr超能文献

运用模糊逻辑预测未来体育教师的学业成绩。

Predicting academic performance with fuzzy logic in prospective physical education and sports teachers.

作者信息

Anapalı Şenel Ayşe, Göksu Berika, Şenel Ender, Solmaz Fatma İrem

机构信息

Applied Mathematics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey.

Physical Education and Sport Teaching, Faculty of Sport Sciences, Mugla Sitki Kocman University, Mugla, Turkey.

出版信息

Sci Rep. 2025 Aug 2;15(1):28241. doi: 10.1038/s41598-025-99124-3.

Abstract

Numerous factors contribute to student success in educational settings, with academic support and learning strategies identified as key influences. Existing research highlights that various academic assistance and individual learning approaches shape student success. Although different methods are available for predicting academic achievement, the application of fuzzy logic in this context remains relatively underexplored. This study seeks to address this gap by employing a fuzzy logic model to forecast the exam performance of prospective physical education and sports teachers. Specifically, the study examines how the learning approaches and perceived levels of academic support among these candidates influence their exam outcomes. The results indicate that fuzzy logic provides a viable tool for predicting student success, demonstrating its potential as an alternative to traditional predictive methods. Furthermore, the findings suggest that students' learning approaches and perceptions of academic support play a significant role in shaping their academic achievements. By integrating fuzzy logic into educational research, this study contributes to a broader understanding of how non-linear and complex interactions between academic support and learning strategies impact student performance. These results highlight the practical potential of fuzzy logic models in identifying at-risk students and designing targeted interventions to improve academic outcomes. Educators and institutions can create more effective and personalised learning environments by fostering deep learning approaches and enhancing academic support systems.

摘要

众多因素促成了学生在教育环境中的成功,其中学术支持和学习策略被视为关键影响因素。现有研究表明,各种学术援助和个人学习方法塑造了学生的成功。尽管有不同的方法可用于预测学业成绩,但模糊逻辑在这方面的应用仍相对未得到充分探索。本研究旨在通过采用模糊逻辑模型来预测未来体育教师的考试成绩,以填补这一空白。具体而言,该研究考察了这些候选人的学习方法和感知到的学术支持水平如何影响他们的考试结果。结果表明,模糊逻辑为预测学生的成功提供了一种可行的工具,证明了其作为传统预测方法替代方案的潜力。此外,研究结果表明,学生的学习方法和对学术支持的看法在塑造他们的学业成绩方面起着重要作用。通过将模糊逻辑纳入教育研究,本研究有助于更广泛地理解学术支持和学习策略之间的非线性和复杂相互作用如何影响学生表现。这些结果凸显了模糊逻辑模型在识别有风险学生和设计针对性干预措施以提高学业成绩方面的实际潜力。教育工作者和机构可以通过培养深度学习方法和加强学术支持系统来创建更有效和个性化的学习环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ec5/12318083/db4c2ad8005a/41598_2025_99124_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验