Han Yingjie, Ma Junxun, Liu Zhefeng, Wang Lijie, Zhang Fan, Huang Di, Liu Siyao, Hu Jifang, Xiao Wenhua, Wang Hong, Wen Juyi, Qin Haifeng, Gao Hongjun, Li Xiaosong, Huang Ziwei, Zhang Jiali, Zhang Yue, Sun Dawei, Su Junyan, Chen Jing, Niu Beifang, Tao Haitao, Yang Bo, Liu Xiaoqing, Wang Jinliang, Hu Yi
Medical School of Chinese PLA, Beijing, China.
Department of Oncology, the First Medical Center of Chinese PLA General Hospital, Beijing, China.
NPJ Precis Oncol. 2025 Aug 2;9(1):271. doi: 10.1038/s41698-025-01056-8.
Although immunotherapy combined with chemotherapy (ICT) is the standard treatment for advanced non-small cell lung cancer (NSCLC), identification of reliable prognostic biomarkers remains challenging. In this multicenter study, we performed next-generation sequencing of tumor samples from 162 patients receiving first-line ICT at the Chinese PLA General Hospital and collected their pathological image information. First, we established a model to predict the risk of tumor progression based on genomic characteristics. Furthermore, a deep learning method was employed to recognize different cell types from pathological images, which significantly improved the accuracy of progression-free survival (PFS) and overall survival (OS) prediction. In summary, we constructed a Prognostic Multimodal Classifier for Progression (PMCP) that possesses the capability to precisely forecast PFS and OS. Patients with the PMCP1 subtype exhibit a low risk of progression and demonstrate a higher proportion of epithelial cells. PMCP highlighted the potential value of multimodal biomarkers in guiding clinical decisions regarding ICT. The area under curve (AUC) for predicting PFS was 0.807. This study revealed the importance of integrating genomic and pathological data to improve prognostic accuracy and enable personalized treatment for patients with advanced NSCLC.
尽管免疫疗法联合化疗(ICT)是晚期非小细胞肺癌(NSCLC)的标准治疗方法,但确定可靠的预后生物标志物仍然具有挑战性。在这项多中心研究中,我们对中国人民解放军总医院162例接受一线ICT治疗的患者的肿瘤样本进行了二代测序,并收集了他们的病理图像信息。首先,我们基于基因组特征建立了一个预测肿瘤进展风险的模型。此外,采用深度学习方法从病理图像中识别不同的细胞类型,这显著提高了无进展生存期(PFS)和总生存期(OS)预测的准确性。总之,我们构建了一个具有精确预测PFS和OS能力的预后多模态进展分类器(PMCP)。PMCP1亚型患者的进展风险较低,上皮细胞比例较高。PMCP突出了多模态生物标志物在指导ICT临床决策中的潜在价值。预测PFS的曲线下面积(AUC)为0.807。这项研究揭示了整合基因组和病理数据对于提高预后准确性以及为晚期NSCLC患者实现个性化治疗的重要性。