Oyunbaatar Nomin-Erdene, Wei Jinliang, Wang Lei, Kim Su-Hwan, Lee Heonzoo, Kwon Kyeongha, Won Yonggwan, Lee Dong-Weon
MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea.
ACS Sens. 2025 Aug 22;10(8):5724-5735. doi: 10.1021/acssensors.5c00857. Epub 2025 Aug 3.
Polymer-based bioresorbable vascular scaffolds (BVS) have garnered significant attention in biomedical applications. Among various BVS, polycaprolactone (PCL)-based scaffolds exhibit excellent biocompatibility, flexibility, chemical stability, and controlled degradation. However, their low radial strength limits practical applicability. Moreover, most reported BVS require periodic postimplantation monitoring to enable early detection of in-stent restenosis and thrombosis. To overcome these limitations, we fabricate a carbon nanotube (CNT)-reinforced PCL BVS using a 3D printing process, enabling patient-specific customization while significantly improving mechanical strength and durability. The proposed PCL/CNT-based stent not only serves as a structural scaffold but also facilitate real-time vascular pressure monitoring by integrating a wireless LC capacitive pressure sensor. The LC pressure sensor is microfabricated using microelectromechanical systems (MEMS) technology and exhibits highly stable resonance characteristics. A key innovation is the integration of a supporting micropillar within the capacitor cavity, which minimizes structural deformation and ensures a stable capacitance response. Mechanical testing demonstrates that PCL/CNT stents achieve significantly higher radial force (0.1 N/mm) compared to pristine PCL (0.013 N/mm). The wireless sensor exhibits high sensitivity (49 kHz/mmHg) with minimal capacitance variation (±5%). studies in a phantom experiment confirm stable resonance frequency fluctuations that accurately correlate with hemodynamic changes. This smart stent integrates biodegradable nanocomposites, 3D printing, and wireless sensing, providing a noninvasive platform for restenosis and thrombosis monitoring. It marks a significant advancement in cardiovascular implants, paving the way for personalized and proactive patient care.
基于聚合物的生物可吸收血管支架(BVS)在生物医学应用中备受关注。在各种BVS中,基于聚己内酯(PCL)的支架具有优异的生物相容性、柔韧性、化学稳定性和可控降解性。然而,它们的低径向强度限制了实际应用。此外,大多数报道的BVS需要定期进行植入后监测,以便早期发现支架内再狭窄和血栓形成。为了克服这些限制,我们使用3D打印工艺制造了一种碳纳米管(CNT)增强的PCL BVS,实现了患者特异性定制,同时显著提高了机械强度和耐久性。所提出的基于PCL/CNT的支架不仅作为结构支架,还通过集成无线LC电容式压力传感器促进实时血管压力监测。该LC压力传感器采用微机电系统(MEMS)技术进行微加工,具有高度稳定的共振特性。一项关键创新是在电容器腔内集成了一个支撑微柱,这使结构变形最小化,并确保了稳定的电容响应。机械测试表明,与原始PCL(0.013 N/mm)相比,PCL/CNT支架的径向力显著更高(0.1 N/mm)。无线传感器具有高灵敏度(49 kHz/mmHg),电容变化最小(±5%)。在模拟实验中的研究证实了稳定的共振频率波动与血流动力学变化准确相关。这种智能支架集成了可生物降解的纳米复合材料、3D打印和无线传感,为再狭窄和血栓形成监测提供了一个非侵入性平台。它标志着心血管植入物的重大进步,为个性化和主动的患者护理铺平了道路。