Suppr超能文献

载万古霉素水凝胶和聚己内酯膜的 3D 打印多孔钛棒用于智能抗菌药物释放。

3D-printed porous titanium rods equipped with vancomycin-loaded hydrogels and polycaprolactone membranes for intelligent antibacterial drug release.

机构信息

Department of Bone and Joint Surgery, Orthopedic Center, The First Hospital of Jilin University, 72 Xinmin Street, Changchun, 130021, Jilin, China.

Weifang Traditional Chinese Hospital, Weifang, China.

出版信息

Sci Rep. 2024 Sep 18;14(1):21749. doi: 10.1038/s41598-024-72457-1.

Abstract

Implant-related infections pose significant challenges to orthopedic surgeries due to the high risk of severe complications. The widespread use of bioactive prostheses in joint replacements, featuring roughened surfaces and tight integration with the bone marrow cavity, has facilitated bacterial proliferation and complicated treatment. Developing antibacterial coatings for orthopedic implants has been a key research focus in recent years to address this critical issue. Researchers have designed coatings using various materials and antibacterial strategies. In this study, we fabricated 3D-printed porous titanium rods, incorporated vancomycin-loaded mPEG-b-PCL gel, and coated them with a PCL layer. We then evaluated the antibacterial efficacy through both in vitro and in vivo experiments. Our coating passively inhibits bacterial biofilm formation and actively controls antibiotic release in response to bacterial growth, providing a practical solution for proactive and sustained infection control. This study utilized 3D printing technology to produce porous titanium rod implants simulating bioactive joint prostheses. The porous structure of the titanium rods was used to load a thermoresponsive gel, mPEG-b-PCL (PEG: polyethylene glycol; PCL: polycaprolactone), serving as a novel drug delivery system carrying vancomycin for controlled antibiotic release. The assembly was then covered with a PCL membrane that inhibits bacterial biofilm formation early in infection and degrades when exposed to lipase solutions, mimicking enzymatic activity during bacterial infections. This setup provides infection-responsive protection and promotes drug release. We investigated the coating's controlled release, antibacterial capability, and biocompatibility through in vitro experiments. We established a Staphylococcus aureus infection model in rabbits, implanting titanium rods in the femoral medullary cavity. We evaluated the efficacy and safety of the composite coating in preventing implant-related infections using imaging, hematology, and pathology. In vitro experiments demonstrated that the PCL membrane stably protects encapsulated vancomycin during PBS immersion. The PCL membrane rapidly degraded at a lipase concentration of 0.2 mg/mL. The mPEG750-b-PCL2500 gel ensured stable and sustained vancomycin release, inhibiting bacterial growth. We investigated the antibacterial effect of the 3D-printed titanium material, coated with PCL and loaded with mPEG-b-PCL hydrogel, using a rabbit Staphylococcus aureus infection model. Imaging, hematology, and histopathology confirmed that our composite antibacterial coating exhibited excellent antibacterial effects and infection prevention, with good safety in trials. Our results indicate that the composite antibacterial coating effectively protects vancomycin in the hydrogel from premature release in the absence of bacterial infection. The outer PCL membrane inhibits bacterial growth and prevents biofilm formation. Upon contact with bacterial lipase, the PCL membrane rapidly degrades, releasing vancomycin for antibacterial action. The mPEG-b-PCL gel provides stable and sustained vancomycin release, prolonging its antibacterial effects. Our composite antibacterial coating demonstrates promising potential for clinical application.

摘要

植入物相关感染给骨科手术带来了重大挑战,因为它们存在严重并发症的高风险。生物活性假体在关节置换中的广泛应用,其表面粗糙化和与骨髓腔的紧密结合,促进了细菌的增殖和治疗的复杂化。为了解决这个关键问题,近年来,开发用于骨科植入物的抗菌涂层一直是一个重要的研究重点。研究人员使用各种材料和抗菌策略设计了涂层。在这项研究中,我们制造了 3D 打印的多孔钛棒,将载万古霉素的 mPEG-b-PCL 凝胶装入其中,并在其上涂覆一层 PCL 层。然后,我们通过体外和体内实验评估了抗菌效果。我们的涂层通过被动抑制细菌生物膜的形成和主动控制抗生素的释放来响应细菌的生长,为主动和持续的感染控制提供了一种实用的解决方案。本研究利用 3D 打印技术制造了模拟生物活性关节假体的多孔钛棒植入物。钛棒的多孔结构用于装载温敏凝胶 mPEG-b-PCL(PEG:聚乙二醇;PCL:聚己内酯),作为一种新型载万古霉素的药物输送系统,用于控制抗生素的释放。然后,将其与抑制细菌生物膜形成的 PCL 膜组装在一起,当暴露于脂肪酶溶液时,PCL 膜会降解,模拟细菌感染期间的酶活性。这种设置提供了感染响应保护并促进了药物释放。我们通过体外实验研究了涂层的控制释放、抗菌能力和生物相容性。我们在兔子中建立了金黄色葡萄球菌感染模型,将钛棒植入股骨髓腔。我们使用影像学、血液学和病理学评估复合涂层在预防植入物相关感染方面的疗效和安全性。体外实验表明,PCL 膜在 PBS 浸泡过程中稳定地保护包封的万古霉素。当脂肪酶浓度为 0.2mg/mL 时,PCL 膜迅速降解。mPEG750-b-PCL2500 水凝胶确保了万古霉素的稳定和持续释放,抑制了细菌的生长。我们研究了 3D 打印钛材料与 PCL 涂层和载有 mPEG-b-PCL 水凝胶的复合抗菌涂层在兔金黄色葡萄球菌感染模型中的抗菌效果。影像学、血液学和组织病理学证实,我们的复合抗菌涂层在试验中表现出优异的抗菌效果和感染预防作用,具有良好的安全性。我们的结果表明,复合抗菌涂层有效地保护水凝胶中的万古霉素在没有细菌感染的情况下不会过早释放。外层 PCL 膜抑制细菌生长并防止生物膜形成。当与细菌脂肪酶接触时,PCL 膜迅速降解,释放万古霉素进行抗菌作用。mPEG-b-PCL 水凝胶提供了稳定和持续的万古霉素释放,延长了其抗菌作用。我们的复合抗菌涂层具有潜在的临床应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26e1/11411058/63e80cd40d68/41598_2024_72457_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验