Zhao Chao, Yong Qi, Xia Lu, Zhu Tengfei, Xia Kun
The Seventh Affiliated Hospital Hengyang Medical School, University of South China (Hunan Provincial Veterans Administration Hospital), Changsha, Hunan, 410000, China.
Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Disease of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan, 410083, China.
Biochem Biophys Res Commun. 2025 Sep 12;779:152405. doi: 10.1016/j.bbrc.2025.152405. Epub 2025 Jul 23.
Understanding the etiology of human neurological and psychiatric disorders remains challenging due to species-specific genomic architectures, prolonged developmental timelines, and the unique cytoarchitectural features of the human brain, which are inadequately replicated in conventional animal models. To address these limitations, human pluripotent stem cell (hPSC)-derived brain organoids have emerged as an ethically accessible experimental system that recapitulates critical aspects of early human neurodevelopment in vitro. These three-dimensional (3D) models mimic the generation of neural progenitors, their proliferation and differentiation into neurons and glial cells, as well as the dynamic cell-cell interactions that govern cortical lamination and circuit assembly. Recent advancements in organoid culture protocols-including the fusion of region-specific brain organoids, vascularization strategies, and the incorporation of microglia-have yielded more physiologically relevant models. Such innovations enable the development of powerful bioassays to investigate disease mechanisms underlying neurodevelopmental disorders (NDDs). Despite persistent challenges related to functional synaptic maturation and modeling the blood-brain barrier, the integration of single-cell multiomics,organoid-on-a-chip systems,and xenotransplantation approaches holds promise for unraveling human-specific pathophysiology and accelerating therapeutic discovery.This review synthesizes the progress in brain organoid technologies and highlights their potential to deepen mechanistic insights into brain disorders while advancing translational research.
由于物种特异性的基因组结构、漫长的发育时间表以及人类大脑独特的细胞结构特征,在传统动物模型中无法充分复制,因此了解人类神经和精神疾病的病因仍然具有挑战性。为了解决这些局限性,人多能干细胞(hPSC)衍生的脑类器官已成为一种在伦理上可行的实验系统,可在体外重现人类早期神经发育的关键方面。这些三维(3D)模型模拟神经祖细胞的产生、它们增殖并分化为神经元和胶质细胞,以及控制皮质分层和回路组装的动态细胞间相互作用。类器官培养方案的最新进展——包括区域特异性脑类器官的融合、血管化策略以及小胶质细胞的整合——产生了更具生理相关性的模型。这些创新使得能够开发强大的生物测定法来研究神经发育障碍(NDDs)的疾病机制。尽管在功能性突触成熟和血脑屏障建模方面仍存在持续挑战,但单细胞多组学、芯片上类器官系统和异种移植方法的整合有望揭示人类特有的病理生理学并加速治疗发现。本综述综合了脑类器官技术的进展,并强调了它们在深化对脑部疾病的机制性认识以及推进转化研究方面的潜力。