Meng Jiayi, Huang Yamei, Liao Yifan, Zhou Quanmei, Wei Yuchen, Wang Xinglin, Gao Linlin, Dai Wei-Lin
State Key Laboratory of Porous Materials for Separation and Conversion, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, PR China.
State Key Laboratory of Porous Materials for Separation and Conversion, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, PR China.
J Colloid Interface Sci. 2025 Dec 15;700(Pt 3):138603. doi: 10.1016/j.jcis.2025.138603. Epub 2025 Jul 31.
Covalent organic frameworks (COFs), characterized by efficient light absorption and highly tunable electronic structures, exhibit substantial promise for photocatalytic hydrogen peroxide (HO) production. To solve the problem of severe photogenerated carrier recombination, the researchers proposed to construct step-scheme (S-scheme) heterojunctions by combining COFs with metal sulfides (MS) to achieve effective separation and directional transfer of photogenerated electrons and holes. Herein, we deposited a bipyridine-linked COF (TpBpy) onto Ag-doped zinc indium sulfide (Ag-ZnInS, denoted as Ag-ZIS) nanoflowers to construct an S-scheme heterojunction for photocatalytic HO production. Employing room-temperature cation exchange engineering, atomic-level modulation of the ZIS lattice is achieved under mild conditions, inducing tunable bandgap narrowing and a red-shifted visible light absorption edge. Ag doping promotes the formation of S-scheme heterojunction and further optimizes the built-in electric field. The construction of the S-scheme heterojunction, which involves strong electronic coupling at the contact interface between Ag-ZIS and TpBpy COF, significantly reduces the recombination rate of photogenerated carriers, enhances charge transfer efficiency, and forms an efficient electron transfer channel. The optimized photocatalyst, Ag-ZIS/TpBpy COF-2 (denoted as AZC-2) exhibited excellent photocatalytic activity from pure water, with HO yield reaching 4425 μmol·g·h. This study highlights the great potential of ion doping strategies for advancing MS/COF-based S-scheme heterojunctions in solar-driven HO synthesis.
共价有机框架材料(COFs)具有高效的光吸收和高度可调的电子结构,在光催化过氧化氢(HO)生成方面展现出巨大潜力。为了解决严重的光生载流子复合问题,研究人员提出通过将COFs与金属硫化物(MS)结合来构建阶梯型(S型)异质结,以实现光生电子和空穴的有效分离和定向转移。在此,我们将联吡啶连接的COF(TpBpy)沉积在银掺杂的硫化锌铟(Ag-ZnInS,记为Ag-ZIS)纳米花上,构建用于光催化HO生成的S型异质结。采用室温阳离子交换工程,在温和条件下实现了ZIS晶格的原子级调制,导致带隙可调变窄和可见光吸收边缘红移。银掺杂促进了S型异质结的形成,并进一步优化了内建电场。S型异质结的构建涉及Ag-ZIS与TpBpy COF接触界面处的强电子耦合,显著降低了光生载流子的复合率,提高了电荷转移效率,并形成了高效的电子转移通道。优化后的光催化剂Ag-ZIS/TpBpy COF-2(记为AZC-2)在纯水中表现出优异的光催化活性,HO产率达到4425 μmol·g·h。这项研究突出了离子掺杂策略在推进基于MS/COF的S型异质结用于太阳能驱动的HO合成方面的巨大潜力。