Nalmpanti M, Dinandra T, Maar M, Larsen J, Vlaswinkel B
Oceans of Energy, Warmonderweg 3, Sassenheim, 2171 AH, the Netherlands.
Marine Animal Ecology Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
Mar Environ Res. 2025 Oct;211:107372. doi: 10.1016/j.marenvres.2025.107372. Epub 2025 Jul 25.
Emerging offshore solar technology offers a promising solution for global energy demands while addressing land scarcity. As the sector expands, understanding its environmental impact is crucial. The blue mussel (Mytilus edulis) has been observed inhabiting these new substrates. This first-of-its-kind study addresses the environmental interactions between offshore solar farms and mussel growth across solar farms of up to 1 km in size, in the Dutch North Sea. A marine growth model, based on Dynamic Energy Budget (DEB) theory and coupled with 1D hydrodynamic forcings predicts the spatial distribution, size and mussel biomass, chlorophyll-a uptake and bio-deposition. Results show spatial differences in mussel growth linked to varying chlorophyll-a availability at different farm locations as a result of current circulation. At smaller farms, individual mussels grow to larger sizes and accumulate more energy reserves, whereas at larger farms, individual growth is constrained. In fact, larger solar farms exhibit relatively less individual mussel biomass due to reduced chlorophyll-a availability beneath the floating structures. Mussel growth is associated with localized changes in chlorophyll-a levels, though these effects are spatially limited. Organic matter deposition also mirrors these spatial variations. Given the vastness of the sea relative to the expected horizontal footprint of offshore solar installations, the environmental effect of mussel-related chlorophyll-a uptake and bio-deposition is foreseen to be spatially limited. These findings provide a foundation for further environmental assessments of offshore solar installations. Achieving sustainable energy production at sea requires integrating advanced technology while understanding, and mitigating potential environmental impacts.
新兴的海上太阳能技术在解决土地稀缺问题的同时,为全球能源需求提供了一个有前景的解决方案。随着该领域的扩大,了解其环境影响至关重要。人们观察到蓝贻贝(紫贻贝)栖息在这些新的基底上。这项首创的研究探讨了荷兰北海面积达1公里的海上太阳能农场与贻贝生长之间的环境相互作用。一个基于动态能量平衡(DEB)理论并结合一维水动力强迫的海洋生长模型预测了贻贝的空间分布、大小和生物量、叶绿素a吸收和生物沉积。结果表明,由于水流循环,贻贝生长的空间差异与不同农场位置叶绿素a的可利用性变化有关。在较小的农场,单个贻贝长得更大,积累的能量储备更多,而在较大的农场,个体生长受到限制。事实上,由于漂浮结构下方叶绿素a的可利用性降低,较大的太阳能农场中单个贻贝的生物量相对较少。贻贝生长与叶绿素a水平的局部变化有关,不过这些影响在空间上是有限的。有机物沉积也反映了这些空间变化。鉴于相对于海上太阳能装置预期的水平占地面积而言海洋面积广阔,预计贻贝相关的叶绿素a吸收和生物沉积对环境的影响在空间上是有限的。这些发现为进一步评估海上太阳能装置的环境影响奠定了基础。要在海上实现可持续能源生产,需要在理解并减轻潜在环境影响的同时整合先进技术。