Uchio-Yamada Kozue, Yasuda Keiko, Suzuki Osamu, Oh-Hashi Kentaro, Ohta Takeshi, Manabe Noboru
Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.
Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Biochim Biophys Acta Mol Basis Dis. 2025 Aug 5;1871(8):168008. doi: 10.1016/j.bbadis.2025.168008.
Alport syndrome is a hereditary disease caused by mutations in Col4a3, Col4a4, and Col4a5, which encode the type IV collagen α3, α4, and α5 chains, respectively. Alport glomerular basement membrane (GBM), which predominantly consists of collagen α1α2α1 (IV) heterotrimers, provides less biomechanical strength than normal GBM with collagen α3α4α5 (IV) heterotrimers. In addition to type IV collagen abnormalities, laminin dysregulation is observed in Alport GBM. In this study, we aimed to investigate the mechanisms underlying laminin dysregulation in Alport GBM and their roles in disease progression using primary podocytes and Col4a4-deficient mice on DBA/2 background. Histological analysis of Col4a4-deficient mice revealed that ectopic laminin α2 deposition in GBM during postnatal nephrogenesis, followed by re-expression of laminin α1 and decreased expression of nephrin. The analysis of primary podocytes indicated that podocytes on low substrate stiffness overexpressed laminin α2. Moreover, podocytes cultured on laminin-α2β1γ1 exhibited higher laminin α1 levels and lower nephrin levels than those cultured on laminin-α5β2γ1. Cell adhesion assays showed that ectopic laminin α2 deposition in GBM may cause defective podocyte-GBM adhesion, leading to podocyte depletion. Overall, these findings suggest that insufficient GBM strength increases the mechanical stress on podocytes via daily transcapillary filtration pressures, resulting in ectopic laminin α2 deposition in GBM, which contributes to defective podocyte-GBM adhesion, GBM abnormalities, and podocyte injury in Alport syndrome.
奥尔波特综合征是一种由Col4a3、Col4a4和Col4a5基因突变引起的遗传性疾病,这三种基因分别编码IV型胶原α3、α4和α5链。奥尔波特肾小球基底膜(GBM)主要由胶原α1α2α1(IV)异源三聚体组成,与具有胶原α3α4α5(IV)异源三聚体的正常GBM相比,其生物力学强度较低。除了IV型胶原异常外,在奥尔波特GBM中还观察到层粘连蛋白失调。在本研究中,我们旨在使用原代足细胞和DBA/2背景的Col4a4基因缺陷小鼠,研究奥尔波特GBM中层粘连蛋白失调的机制及其在疾病进展中的作用。对Col4a4基因缺陷小鼠的组织学分析显示,出生后肾发生过程中GBM中层粘连蛋白α2异位沉积,随后层粘连蛋白α1重新表达,肾足蛋白表达降低。对原代足细胞的分析表明,在低底物硬度条件下培养的足细胞层粘连蛋白α2表达上调。此外,在层粘连蛋白-α2β1γ1上培养的足细胞比在层粘连蛋白-α5β2γ1上培养的足细胞表现出更高的层粘连蛋白α1水平和更低的肾足蛋白水平。细胞黏附试验表明,GBM中层粘连蛋白α2异位沉积可能导致足细胞与GBM黏附缺陷,从而导致足细胞耗竭。总体而言,这些发现表明,GBM强度不足通过每日跨毛细血管滤过压力增加足细胞上的机械应力,导致GBM中层粘连蛋白α2异位沉积,这有助于奥尔波特综合征中足细胞与GBM黏附缺陷、GBM异常和足细胞损伤。