Suppr超能文献

一种示踪剂,两种平台:在时间分辨荧光共振能量转移(TR-FRET)和纳米荧光共振能量转移(NanoBRET)靶点结合分析中解锁荧光探针的多功能性

One Tracer, Dual Platforms: Unlocking Versatility of Fluorescent Probes in TR-FRET and NanoBRET Target Engagement Assays.

作者信息

Monroy Erika Y, Yu Xin, Lu Dong, Qi Xiaoli, Wang Jin

机构信息

Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States.

Center for NextGen Therapeutics, Baylor College of Medicine, Houston, Texas 77030, United States.

出版信息

ACS Med Chem Lett. 2025 Jul 7. doi: 10.1021/acsmedchemlett.5c00171.

Abstract

Target engagement assays are essential for drug discovery, utilizing Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) and Nano Bioluminescence Resonance Energy Transfer (NanoBRET) as complementary methods for biochemical and cellular evaluation. Traditional platforms require distinct fluorescent tracers, increasing costs and complexity. This study systematically evaluates the cross-platform performance of T2-BODIPY-FL and T2-BODIPY-589, tracers developed for receptor-interacting protein kinase 1 (RIPK1) target engagement in TR-FRET and NanoBRET applications, respectively. Our results demonstrate both tracers effectively bridge biochemical and cellular assays, providing reliable measurements. T2-BODIPY-589 demonstrates superior performance in NanoBRET (Z' up to 0.80) and acceptable functionality in TR-FRET (Z'=0.53). Conversely, T2-BODIPY-FL performs optimally in TR-FRET (Z'=0.57) and exhibits NanoBRET potential (Z' up to 0.72). Competition assays with an unlabeled inhibitor yielded consistent binding constants across all combinations. These findings suggest a single tracer can integrate diverse assay platforms, enhancing consistency and comparability in drug discovery.

摘要

靶点结合分析对于药物发现至关重要,它利用时间分辨荧光共振能量转移(TR-FRET)和纳米生物发光共振能量转移(NanoBRET)作为生化和细胞评估的互补方法。传统平台需要不同的荧光示踪剂,增加了成本和复杂性。本研究系统评估了T2-硼二吡咯-FL和T2-硼二吡咯-589的跨平台性能,这两种示踪剂分别是为TR-FRET和NanoBRET应用中与受体相互作用蛋白激酶1(RIPK1)靶点结合而开发的。我们的结果表明,这两种示踪剂都能有效地衔接生化和细胞分析,提供可靠的测量结果。T2-硼二吡咯-589在NanoBRET中表现出卓越性能(Z'高达0.80),在TR-FRET中具有可接受的功能(Z' = 0.53)。相反,T2-硼二吡咯-FL在TR-FRET中表现最佳(Z' = 0.57),并展现出NanoBRET潜力(Z'高达0.72)。使用未标记抑制剂进行的竞争分析在所有组合中产生了一致的结合常数。这些发现表明,单一示踪剂可以整合多种分析平台,提高药物发现中的一致性和可比性。

相似文献

3
Development of a HiBiT Peptide-Based NanoBRET Ligand Binding Assay for Galanin Receptor 1 in Live Cells.
ACS Chem Biol. 2025 Jul 18;20(7):1594-1608. doi: 10.1021/acschembio.5c00166. Epub 2025 Jul 4.
4
TGF-β receptor-specific NanoBRET Target Engagement in living cells for high-throughput kinase inhibitor screens.
SLAS Discov. 2024 Dec;29(8):100196. doi: 10.1016/j.slasd.2024.100196. Epub 2024 Nov 12.
6
Development of Biochemical and Cellular Probes to Study RIPK1 Target Engagement.
ACS Med Chem Lett. 2024 May 10;15(6):906-916. doi: 10.1021/acsmedchemlett.4c00104. eCollection 2024 Jun 13.
8
Development of a high-throughput TR-FRET assay to identify inhibitors of the FAK-paxillin protein-protein interaction.
SLAS Discov. 2025 Jul;34:100237. doi: 10.1016/j.slasd.2025.100237. Epub 2025 May 1.
9
Early insulin fibril detection: Insulin fibril research and TR structural transition detection with FRET-Probe.
Anal Chim Acta. 2025 Oct 1;1369:344366. doi: 10.1016/j.aca.2025.344366. Epub 2025 Jun 25.
10
Development of a NanoBRET assay for evaluation of 14-3-3σ molecular glues.
SLAS Discov. 2024 Jul;29(5):100165. doi: 10.1016/j.slasd.2024.100165. Epub 2024 May 24.

本文引用的文献

1
Development of a RIPK1 degrader to enhance antitumor immunity.
Nat Commun. 2024 Dec 16;15(1):10683. doi: 10.1038/s41467-024-55006-2.
2
New insights into protein-protein interaction modulators in drug discovery and therapeutic advance.
Signal Transduct Target Ther. 2024 Dec 6;9(1):341. doi: 10.1038/s41392-024-02036-3.
3
Evaluation of High-Affinity Monoclonal Antibodies and Antibody-Drug Conjugates by Homogenous Time-Resolved FRET.
ACS Med Chem Lett. 2024 Aug 30;15(9):1598-1605. doi: 10.1021/acsmedchemlett.4c00317. eCollection 2024 Sep 12.
4
Lysineless HiBiT and NanoLuc Tagging Systems as Alternative Tools for Monitoring Targeted Protein Degradation.
ACS Med Chem Lett. 2024 Jul 28;15(8):1367-1375. doi: 10.1021/acsmedchemlett.4c00271. eCollection 2024 Aug 8.
5
tracerDB: a crowdsourced fluorescent tracer database for target engagement analysis.
Nat Commun. 2024 Jul 5;15(1):5646. doi: 10.1038/s41467-024-49896-5.
6
Development of Biochemical and Cellular Probes to Study RIPK1 Target Engagement.
ACS Med Chem Lett. 2024 May 10;15(6):906-916. doi: 10.1021/acsmedchemlett.4c00104. eCollection 2024 Jun 13.
7
Measuring Protein-Ligand Binding by Hyperpolarized Ultrafast NMR.
J Am Chem Soc. 2024 Feb 28;146(8):5063-5066. doi: 10.1021/jacs.3c14359. Epub 2024 Feb 19.
8
Development of a high-throughput TR-FRET screening assay for LAG-3/FGL1 interaction.
SLAS Discov. 2023 Jun;28(4):188-192. doi: 10.1016/j.slasd.2023.04.003. Epub 2023 Apr 28.
9
Quantitative measurement of PROTAC intracellular accumulation.
Methods Enzymol. 2023;681:189-214. doi: 10.1016/bs.mie.2022.11.001. Epub 2022 Dec 19.
10
Development of a high-throughput TR-FRET screening assay for a fast-cycling KRAS mutant.
SLAS Discov. 2023 Jan;28(1):39-47. doi: 10.1016/j.slasd.2022.12.001. Epub 2022 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验