文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于谷胱甘肽响应性仿生纳米平台的增强型切伦科夫辐射诱导光动力疗法,以触发免疫原性细胞死亡用于肿瘤免疫治疗。

Enhanced Cerenkov radiation induced photodynamic therapy based on GSH-responsive biomimetic nanoplatform to trigger immunogenic cell death for tumor immunotherapy.

作者信息

Qian Ruijie, Guo Yawen, Gao Xuemei, Ren Jianzhuang, Jiang Dawei, An Rui, Wang Ruihua, Duan Xuhua, Han Xinwei

机构信息

Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.

Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.

出版信息

Asian J Pharm Sci. 2025 Aug;20(4):101070. doi: 10.1016/j.ajps.2025.101070. Epub 2025 May 27.


DOI:10.1016/j.ajps.2025.101070
PMID:40757250
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12314323/
Abstract

Cerenkov radiation (CR) can serve as a source of internal light to overcome the limited tissue penetration of external light in conventional photodynamic therapy (PDT). However, insufficient luminescence intensity hinders the clinical application of CR-PDT. Here, we developed a glutathione-responsive biomimetic nanoplatform by fusing cancer cell membranes and liposomes loaded with photosensitizer hematoporphyrin monomethyl ether (HMME) and a radiation energy amplifier Eu, named HMME-Eu@LEV. Colloidal Eu converts γ-radiation and CR from radioisotopes into fluorescence to enhance anti-tumor effects. Sequential administration ensures co-localization of HMME-Eu@LEV and radiopharmaceutical F-fluorodeoxyglucose (FDG) at the tumor site, triggering enhanced CR-PDT and immunogenic cell death. Our observations indicated that luminescence resonance energy transfer between Eu and HMME was efficient, and Cerenkov luminescence from Eu@LEV+FDG was approximately 5.6-fold higher in intensity than that from FDG alone. As a result, abundant ROS were generated, and macrophages in the tumor microenvironment were polarized from M2 to M1. In addition, the immunosuppressive tumor microenvironment could be reversed by promoting the maturation of dendritic cells and infiltration of cytotoxic T lymphocytes. The activated immune system effectively inhibited the growth of primary tumors and spread of distant metastases. Our work demonstrates the feasibility of CR-PDT without an external light source and the critical role of nanomaterials in personalized medicine.

摘要

切伦科夫辐射(CR)可作为一种内部光源,以克服传统光动力疗法(PDT)中外部光组织穿透有限的问题。然而,发光强度不足阻碍了CR-PDT的临床应用。在此,我们通过融合癌细胞膜和负载有光敏剂单甲醚血卟啉(HMME)及辐射能量放大器铕(Eu)的脂质体,开发了一种谷胱甘肽响应性仿生纳米平台,命名为HMME-Eu@LEV。胶体铕将来自放射性同位素的γ射线和CR转化为荧光,以增强抗肿瘤效果。顺序给药确保HMME-Eu@LEV与放射性药物F-氟脱氧葡萄糖(FDG)在肿瘤部位共定位,引发增强的CR-PDT和免疫原性细胞死亡。我们的观察表明,铕和HMME之间的发光共振能量转移是有效的,并且Eu@LEV+FDG的切伦科夫发光强度比单独的FDG高出约5.6倍。结果,产生了大量活性氧,肿瘤微环境中的巨噬细胞从M2型极化到M1型。此外,通过促进树突状细胞成熟和细胞毒性T淋巴细胞浸润,可逆转免疫抑制性肿瘤微环境。激活的免疫系统有效抑制了原发性肿瘤的生长和远处转移的扩散。我们的工作证明了无需外部光源的CR-PDT的可行性以及纳米材料在个性化医学中的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee76/12314323/4d670089f31f/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee76/12314323/c1daef51bd4d/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee76/12314323/df6a7a0c6ed0/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee76/12314323/9b0fb79eef86/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee76/12314323/4c0966a4a1ef/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee76/12314323/49f29de8546f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee76/12314323/e172b1b5530a/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee76/12314323/f6cc0cb6c78c/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee76/12314323/4d670089f31f/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee76/12314323/c1daef51bd4d/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee76/12314323/df6a7a0c6ed0/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee76/12314323/9b0fb79eef86/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee76/12314323/4c0966a4a1ef/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee76/12314323/49f29de8546f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee76/12314323/e172b1b5530a/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee76/12314323/f6cc0cb6c78c/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee76/12314323/4d670089f31f/gr6.jpg

相似文献

[1]
Enhanced Cerenkov radiation induced photodynamic therapy based on GSH-responsive biomimetic nanoplatform to trigger immunogenic cell death for tumor immunotherapy.

Asian J Pharm Sci. 2025-8

[2]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[3]
Evaluating the theranostic potential of ferumoxytol when combined with radiotherapy in a mammary dual tumor mouse model.

Med Phys. 2025-7

[4]
Possible Number of Recommended Sessions and Influential Factors of Hematoporphyrin Monomethyl Ether Photodynamic Therapy for Pulsed Dye Laser-Resistant Facial Port-Wine Stain.

Lasers Surg Med. 2025-4

[5]
Sexual Harassment and Prevention Training

2025-1

[6]
123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma.

Cochrane Database Syst Rev. 2015-9-29

[7]
Light therapies for acne.

Cochrane Database Syst Rev. 2016-9-27

[8]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[9]
Does Augmenting Irradiated Autografts With Free Vascularized Fibula Graft in Patients With Bone Loss From a Malignant Tumor Achieve Union, Function, and Complication Rate Comparably to Patients Without Bone Loss and Augmentation When Reconstructing Intercalary Resections in the Lower Extremity?

Clin Orthop Relat Res. 2025-6-26

[10]
Aggregation-induced emission photosensitizer/bacteria biohybrids enhance Cerenkov radiation-induced photodynamic therapy by activating anti-tumor immunity for synergistic tumor treatment.

Acta Biomater. 2023-9-1

本文引用的文献

[1]
Melittin-incorporated nanomedicines for enhanced cancer immunotherapy.

J Control Release. 2024-11

[2]
Acidity-activatable dynamic hybrid nanoplatforms derived from extracellular vesicles of M1 macrophages enhance cancer immunotherapy through synergistic triple immunotherapy.

J Nanobiotechnology. 2024-7-20

[3]
Cell Membrane Hybrid Lipid Nanovesicles Enhance Innate Immunity for Synergistic Immunotherapy by Promoting Immunogenic Cell Death and cGAS Activation.

Biomater Res. 2024-6-12

[4]
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2024

[5]
Smart nanoparticles for cancer therapy.

Signal Transduct Target Ther. 2023-11-3

[6]
Simultaneous Activation of Pyroptosis and cGAS-STING Pathway with Epigenetic/ Photodynamic Nanotheranostic for Enhanced Tumor Photoimmunotherapy.

Adv Mater. 2024-2

[7]
An Activatable Phototheranostic Probe for Anti-hypoxic Type I Photodynamic- and Immuno-Therapy of Cancer.

Adv Mater. 2024-1

[8]
Outer Membrane Vesicle-Based Nanohybrids Target Tumor-Associated Macrophages to Enhance Trained Immunity-Related Vaccine-Generated Antitumor Activity.

Adv Mater. 2023-11

[9]
Extracellular Vesicles-Derived Hybrid Nanoplatforms for Amplified CD47 Blockade-Based Cancer Immunotherapy.

Adv Mater. 2023-9

[10]
M2 Macrophage Hybrid Membrane-Camouflaged Targeted Biomimetic Nanosomes to Reprogram Inflammatory Microenvironment for Enhanced Enzyme-Thermo-Immunotherapy.

Adv Mater. 2023-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索