文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

智能纳米颗粒用于癌症治疗。

Smart nanoparticles for cancer therapy.

机构信息

Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.

School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China.

出版信息

Signal Transduct Target Ther. 2023 Nov 3;8(1):418. doi: 10.1038/s41392-023-01642-x.


DOI:10.1038/s41392-023-01642-x
PMID:37919282
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10622502/
Abstract

Smart nanoparticles, which can respond to biological cues or be guided by them, are emerging as a promising drug delivery platform for precise cancer treatment. The field of oncology, nanotechnology, and biomedicine has witnessed rapid progress, leading to innovative developments in smart nanoparticles for safer and more effective cancer therapy. In this review, we will highlight recent advancements in smart nanoparticles, including polymeric nanoparticles, dendrimers, micelles, liposomes, protein nanoparticles, cell membrane nanoparticles, mesoporous silica nanoparticles, gold nanoparticles, iron oxide nanoparticles, quantum dots, carbon nanotubes, black phosphorus, MOF nanoparticles, and others. We will focus on their classification, structures, synthesis, and intelligent features. These smart nanoparticles possess the ability to respond to various external and internal stimuli, such as enzymes, pH, temperature, optics, and magnetism, making them intelligent systems. Additionally, this review will explore the latest studies on tumor targeting by functionalizing the surfaces of smart nanoparticles with tumor-specific ligands like antibodies, peptides, transferrin, and folic acid. We will also summarize different types of drug delivery options, including small molecules, peptides, proteins, nucleic acids, and even living cells, for their potential use in cancer therapy. While the potential of smart nanoparticles is promising, we will also acknowledge the challenges and clinical prospects associated with their use. Finally, we will propose a blueprint that involves the use of artificial intelligence-powered nanoparticles in cancer treatment applications. By harnessing the potential of smart nanoparticles, this review aims to usher in a new era of precise and personalized cancer therapy, providing patients with individualized treatment options.

摘要

智能纳米颗粒能够响应生物信号或受其引导,作为一种有前途的药物输送平台,正在为精确的癌症治疗崭露头角。肿瘤学、纳米技术和生物医学领域取得了快速进展,推动了智能纳米颗粒在更安全、更有效的癌症治疗方面的创新发展。在这篇综述中,我们将重点介绍智能纳米颗粒的最新进展,包括聚合物纳米颗粒、树枝状大分子、胶束、脂质体、蛋白纳米颗粒、细胞膜纳米颗粒、介孔硅纳米颗粒、金纳米颗粒、氧化铁纳米颗粒、量子点、碳纳米管、黑磷、MOF 纳米颗粒等。我们将聚焦于它们的分类、结构、合成和智能特性。这些智能纳米颗粒能够响应各种外部和内部刺激,如酶、pH 值、温度、光学和磁性,从而使它们成为智能系统。此外,本综述还将探讨通过将肿瘤特异性配体(如抗体、肽、转铁蛋白和叶酸)功能化到智能纳米颗粒表面来实现肿瘤靶向的最新研究进展。我们还将总结不同类型的药物输送选择,包括小分子、肽、蛋白质、核酸,甚至是活细胞,以探讨它们在癌症治疗中的潜在应用。尽管智能纳米颗粒的潜力巨大,但我们也将承认与它们的使用相关的挑战和临床前景。最后,我们将提出一个蓝图,涉及使用人工智能驱动的纳米颗粒在癌症治疗应用中的应用。通过利用智能纳米颗粒的潜力,本综述旨在为精确和个性化的癌症治疗带来新的时代,为患者提供个性化的治疗选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdff/10622502/7ccf1e559de3/41392_2023_1642_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdff/10622502/dc51335c661c/41392_2023_1642_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdff/10622502/7f7ad2390a8c/41392_2023_1642_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdff/10622502/b65b92de4219/41392_2023_1642_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdff/10622502/a6e4ac5fce96/41392_2023_1642_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdff/10622502/7ccf1e559de3/41392_2023_1642_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdff/10622502/dc51335c661c/41392_2023_1642_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdff/10622502/7f7ad2390a8c/41392_2023_1642_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdff/10622502/b65b92de4219/41392_2023_1642_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdff/10622502/a6e4ac5fce96/41392_2023_1642_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdff/10622502/7ccf1e559de3/41392_2023_1642_Fig5_HTML.jpg

相似文献

[1]
Smart nanoparticles for cancer therapy.

Signal Transduct Target Ther. 2023-11-3

[2]
Recent Nanocarrier Approaches for Targeted Drug Delivery in Cancer Therapy.

Curr Mol Pharmacol. 2021

[3]
Smart Nanocarriers as an Emerging Platform for Cancer Therapy: A Review.

Molecules. 2021-12-27

[4]
Enzyme-responsive smart nanocarriers for targeted chemotherapy: an overview.

Drug Deliv Transl Res. 2022-6

[5]
Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review.

J Adv Res. 2018-6-25

[6]
Rise of gold nanoparticles as carriers of therapeutic agents.

Acta Chim Slov. 2023-11-2

[7]
The new era of nanotechnology, an alternative to change cancer treatment.

Drug Des Devel Ther. 2017-9-27

[8]
A review of small molecules and drug delivery applications using gold and iron nanoparticles.

Int J Nanomedicine. 2019-3-11

[9]
Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.

Eur J Pharm Biopharm. 2015-6

[10]
Smart Nanotherapeutic Targeting of Tumor Vasculature.

Acc Chem Res. 2019-8-21

引用本文的文献

[1]
Progenitor cells, microglia, and non-coding RNAs: Orchestrators of glioblastoma pathogenesis and therapeutic resistance.

Noncoding RNA Res. 2025-8-5

[2]
Synergistic Ferroptosis-Immunotherapy Nanoplatforms: Multidimensional Engineering for Tumor Microenvironment Remodeling and Therapeutic Optimization.

Nanomicro Lett. 2025-9-2

[3]
Perspectives on non-genetic optoelectronic modulation biointerfaces for advancing healthcare.

Med X. 2024-12

[4]
The Potential of Amphiphilic Cyclodextrins as Carriers for Therapeutic Purposes: A Short Overview.

Pharmaceutics. 2025-8-21

[5]
Tumor Microenvironment Specifically Regulated Nano Chemoamplifier for Chemosensitization and Activation of Anti-Tumor Immune Response by Coordinating Intracellular Magnesium Overload.

Pharmaceutics. 2025-8-9

[6]
Nanomedicine: The Effective Role of Nanomaterials in Healthcare from Diagnosis to Therapy.

Pharmaceutics. 2025-7-30

[7]
Nanoparticle-Based Delivery Strategies for Combating Drug Resistance in Cancer Therapeutics.

Cancers (Basel). 2025-8-11

[8]
Improved Hypoxic Microenvironment By Nanoformulation For Effective T Cell Therapy In Mice Model.

Int J Nanomedicine. 2025-8-20

[9]
Green-synthesized silver nanoparticles from incensole acetate modulate expression in DMBA-induced breast cancer.

Nanoscale Adv. 2025-7-31

[10]
Overcoming the blood-brain barrier (BBB) in pediatric CNS tumors: immunotherapy and nanomedicine-driven strategies.

Med Oncol. 2025-8-19

本文引用的文献

[1]
Amphiphilic Dendritic Hydrogels with Carbosilane Nanodomains: Preparation and Characterization as Drug Delivery Systems.

Chem Mater. 2023-3-22

[2]
Tumor-Specific Photothermal-Therapy-Assisted Immunomodulation via Multiresponsive Adjuvant Nanoparticles.

Adv Mater. 2023-5

[3]
Machine-learning-assisted single-vessel analysis of nanoparticle permeability in tumour vasculatures.

Nat Nanotechnol. 2023-6

[4]
Artificial intelligence aids in development of nanomedicines for cancer management.

Semin Cancer Biol. 2023-2

[5]
Functionalization of small black phosphorus nanoparticles for targeted imaging and photothermal therapy of cancer.

Sci Bull (Beijing). 2018-7-30

[6]
Unmanned Aerial Vehicle Mediated Drug Delivery for First Aid.

Adv Mater. 2023-3

[7]
Multifunctional Au Modified TiC-MXene for Photothermal/Enzyme Dynamic/Immune Synergistic Therapy.

Nano Lett. 2022-10-26

[8]
Topology mediates transport of nanoparticles in macromolecular networks.

Nat Commun. 2022-7-14

[9]
Enzyme-Powered Hollow Nanorobots for Active Microsampling Enabled by Thermoresponsive Polymer Gating.

ACS Nano. 2022-7-26

[10]
Enhancing CRISPR/Cas gene editing through modulating cellular mechanical properties for cancer therapy.

Nat Nanotechnol. 2022-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索