Shinzato Andressa, Sekiyama Juliana Y, Kayser Cristiane
Division of Rheumatology, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil.
Maringá Regional University Hospital, Universidade Estadual de Maringá, Maringá, PR, Brazil.
Clin Exp Rheumatol. 2025 Aug;43(8):1499-1507. doi: 10.55563/clinexprheumatol/0igmnr. Epub 2025 Aug 1.
Although the role of nailfold videocapillaroscopy (NVC) in the investigation of Raynaud's phenomenon (RP) and systemic sclerosis (SSc) is well established, there is significant heterogeneity in the parameters used to identify the scleroderma pattern. Recently, different algorithms have been proposed for the identification of the scleroderma pattern associated with SSc. This study aimed to explore the accuracy of different capillaroscopic parameters and algorithms (the Fast Track algorithm and the CAPI-score) for identifying the scleroderma pattern in individuals with and without RP and autoimmune rheumatic diseases.
A total of 258 NVCs were analysed. The accuracy and area under the curve (AUC) of qualitative and quantitative NVC parameters were analysed to discriminate between scleroderma and non-scleroderma patterns.
The scleroderma pattern was identified in 101 (39.15%) NVCs. A density of ≤8 capillaries/mm was defined as the optimal cut-off point (AUC 0.911, 95% CI 0.871-0.950), yielding the highest accuracy (87.94%) for identifying the SD pattern versus normal and nonspecific microangiopathy. Cut-off values of ≤3 or ≤6 capillaries/mm resulted in lower sensitivity despite high specificity. The presence of giant capillaries demonstrated high specificity (98.09%) and an accuracy of 85.66%. The accuracy improved when the presence of giant capillaries and ≤8 capillaries/mm or ≤7 capillaries/mm were combined (accuracies of 91.08% and 86.82%, respectively).
The combination of two capillaroscopy parameters (giant capillaries and capillary density) inspired by the Fast Track and CAPI-score, was highly accurate for defining the scleroderma pattern in our cohort.
尽管甲襞视频毛细血管显微镜检查(NVC)在雷诺现象(RP)和系统性硬化症(SSc)的研究中的作用已得到充分确立,但用于识别硬皮病模式的参数存在显著异质性。最近,有人提出了不同的算法来识别与SSc相关的硬皮病模式。本研究旨在探讨不同的毛细血管显微镜检查参数和算法(快速通道算法和CAPI评分)在识别有无RP和自身免疫性风湿性疾病个体的硬皮病模式方面的准确性。
共分析了258份NVC检查结果。分析定性和定量NVC参数的准确性和曲线下面积(AUC),以区分硬皮病和非硬皮病模式。
在101份(39.15%)NVC检查结果中识别出硬皮病模式。毛细血管密度≤8根/毫米被定义为最佳切点(AUC 0.911,95%CI 0.871-0.950),在识别硬皮病模式与正常和非特异性微血管病变方面具有最高的准确性(87.94%)。尽管特异性高,但毛细血管密度≤3根/毫米或≤6根/毫米的切点导致较低的敏感性。巨大毛细血管的存在显示出高特异性(98.09%)和85.66%的准确性。当巨大毛细血管的存在与毛细血管密度≤8根/毫米或≤7根/毫米相结合时,准确性提高(分别为91.08%和86.82%)。
受快速通道算法和CAPI评分启发的两个毛细血管显微镜检查参数(巨大毛细血管和毛细血管密度)的组合,在我们的队列中定义硬皮病模式时具有很高的准确性。