Mboko Wadzanai P, Wang Yuanyuan, Cao Weiping, Sayedahmed Ekramy E, Mishina Margarita, Kumar Amrita, Bohannon Caitlin D, Patton Sunni K, Ray Sean D, Sharma Suresh D, Kumari Rashmi, Liepkalns Justine S, Reber Adrian J, Kamal Ram P, McCoy James, Amoah Samuel, Ranjan Priya, Burroughs Mark, Sheth Mili, Lee Justin, Batra Dhwani, Gangappa Shivaprakash, York Ian A, Knight Paul R, Pohl Jan, Mittal Suresh K, Sambhara Suryaprakash
Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA.
J Virol. 2025 Aug 4:e0053225. doi: 10.1128/jvi.00532-25.
Seasonal influenza causes 290,000-650,000 deaths annually, with vaccination efficacy ranging from 10 to 60%. The emergence of drug-resistant and highly pathogenic avian influenza viruses underscores the urgent need for novel protective strategies. Epidemiological observations have long suggested that certain vaccines, such as Bacillus Calmette-Guérin (BCG), can provide protection against diverse pathogens (S. Biering-Sørensen, P. Aaby, N. Lund, et al., Clin Infect Dis 65:1183-1190, 2017, https://doi.org/10.1093/cid/cix525; M.-L. Garly, C. L. Martins, C. Balé, et al., Vaccine 21:2782-2790, 2003, https://doi.org/10.1016/s0264-410x(03)00181-6; C. A. G. Timmermann, S. Biering-Sørensen, P. Aaby, et al., Trop Med Int Health 20:1733-1744, 2015, https://doi.org/10.1111/tmi.12614). While the cellular and molecular mechanisms underlying such protection remain incompletely understood, emerging research offers critical insights into innate immune system modulation (B. Cirovic, L. C. J. de Bree, L. Groh, et al., Cell Host Microbe 28:322-334, 2020, https://doi.org/10.1016/j.chom.2020.05.014; L. Kong, S. J. C. F. M. Moorlag, A. Lefkovith, et al., Cell Rep 37:110028, 2021, https://doi.org/10.1016/j.celrep.2021.110028; H. Mohammadi, N. Sharafkandi, M. Hemmatzadeh, et al., J Cell Physiol 233:4512-4529, 2018, https://doi.org/10.1002/jcp.26250; S. J. C. F. M. Moorlag, Y. A. Rodriguez-Rosales, J. Gillard, et al., Cell Rep 33:108387, 2021, https://doi.org/10.1016/j.celrep.2020.108387). We investigated whether a trained innate immune system with non-replicating adenoviruses could provide protection against diverse influenza virus strains. We demonstrated that replication-defective human adenoviruses can effectively train the innate immune system, conferring protective immunity in mice against multiple influenza virus strains, including H1N1, H3N2, H5N2, H7N9, and H9N2. In addition, bovine and chimpanzee adenoviruses can also activate human innate lymphoid cells (ILCs) and confer protection against challenge with influenza H3N2 virus in mice. Remarkably, this protection occurs in the complete absence of influenza-specific adaptive immune responses (influenza virus-specific hemagglutination-inhibiting antibodies, neutralizing antibodies, and influenza nucleoprotein-specific CD8 T cells). Key protective mechanisms include increased activation of ILC1, ILC2, and ILC3 populations, enhanced expression of interferon-stimulated genes (ISGs), upregulation of antiviral signaling pathways, and metabolic reprogramming of ILC subsets. Adoptive transfer experiments demonstrated that trained ILCs were sufficient to protect against influenza H1N1 infection in ILC-deficient mice. This research establishes a novel strategy for enhancing innate antiviral immunity, offering broad-spectrum protection against diverse influenza strains, a promising approach for not only pandemic preparedness but also against emerging infectious diseases. Training innate lymphoid cells through non-replicating adenoviral vectors represents a promising approach to enhancing broad-spectrum antiviral immunity, complementing traditional vaccination strategies.IMPORTANCEThe findings represent a potential game-changer for fighting influenza, which kills hundreds of thousands of people worldwide each year despite our best vaccination efforts. Current flu vaccines often provide limited protection because they must be reformulated annually to match circulating strains, and their effectiveness varies dramatically from year to year. The scientists discovered something remarkable: common adenoviruses (which typically cause mild cold-like symptoms) can essentially "train" our immune system's first line of defense to recognize and fight off multiple types of flu viruses simultaneously. This protection works through a completely different mechanism than traditional vaccines-it does not rely on creating specific antibodies against flu proteins. Instead, the treatment activates special immune cells called innate lymphoid cells (ILCs), which act like the body's rapid response team. These trained cells provide broad protection against various flu strains, including dangerous bird flu variants that could cause future pandemics. The significance lies in potentially creating a universal flu protection strategy that could work against unknown future flu strains, offering hope for better pandemic preparedness and reducing seasonal flu's devastating global impact.
季节性流感每年导致29万至65万人死亡,疫苗效力在10%至60%之间。耐药性和高致病性禽流感病毒的出现凸显了对新型防护策略的迫切需求。长期以来,流行病学观察表明,某些疫苗,如卡介苗(BCG),可以提供针对多种病原体的保护(S. Biering-Sørensen、P. Aaby、N. Lund等人,《临床传染病》65:1183 - 1190,2017年,https://doi.org/10.1093/cid/cix525;M.-L. Garly、C. L. Martins、C. Balé等人,《疫苗》21:2782 - 2790,2003年,https://doi.org/10.1016/s0264-410x(03)00181-6;C. A. G. Timmermann、S. Biering-Sørensen、P. Aaby等人,《热带医学与国际卫生》20:1733 - 1744,2015年,https://doi.org/10.1111/tmi.12614)。虽然这种保护背后的细胞和分子机制仍未完全了解,但新出现的研究为先天免疫系统调节提供了关键见解(B. Cirovic、L. C. J. de Bree、L. Groh等人,《细胞宿主与微生物》28:322 - 334,2020年,https://doi.org/10.1016/j.chom.2020.05.014;L. Kong、S. J. C. F. M. Moorlag、A. Lefkovith等人,《细胞报告》37:110028,2021年,https://doi.org/10.1016/j.celrep.2021.110028;H. Mohammadi、N. Sharafkandi、M. Hemmatzadeh等人,《细胞生理学杂志》233:4512 - 4529,2018年,https://doi.org/10.1002/jcp.26250;S. J. C. F. M. Moorlag、Y. A. Rodriguez-Rosales、J. Gillard等人,《细胞报告》33:108387(应为108387),2021年,https://doi.org/10.1016/j.celrep.2020.108387)。我们研究了用非复制性腺病毒训练的先天免疫系统是否能提供针对多种流感病毒株的保护。我们证明,复制缺陷型人腺病毒可以有效训练先天免疫系统,在小鼠中赋予针对多种流感病毒株的保护性免疫,包括H1N1、H3N2、H5N2、H7N9和H9N2。此外,牛和黑猩猩腺病毒也能激活人先天淋巴细胞(ILC),并在小鼠中赋予针对H3N2流感病毒攻击的保护作用。值得注意的是,这种保护在完全没有流感特异性适应性免疫反应(流感病毒特异性血凝抑制抗体、中和抗体和流感核蛋白特异性CD8 T细胞)的情况下发生。关键的保护机制包括ILC1、ILC2和ILC3群体的激活增加、干扰素刺激基因(ISG)的表达增强、抗病毒信号通路的上调以及ILC亚群的代谢重编程。过继转移实验表明,训练后的ILC足以保护ILC缺陷小鼠免受H1N1流感感染。这项研究建立了一种增强先天抗病毒免疫力的新策略,为多种流感毒株提供广谱保护,这不仅是应对大流行的有前景方法,也是针对新出现传染病的有前景方法。通过非复制性腺病毒载体训练先天淋巴细胞代表了一种增强广谱抗病毒免疫力的有前景方法,可补充传统疫苗接种策略。
重要性
这些发现可能会改变抗击流感的局面,尽管我们全力进行疫苗接种,但流感每年仍在全球导致数十万人死亡。目前的流感疫苗通常提供有限的保护,因为它们必须每年重新配方以匹配流行毒株,而且其有效性每年差异很大。科学家们发现了一些非凡的事情:常见的腺病毒(通常引起类似普通感冒的轻微症状)基本上可以“训练”我们免疫系统的第一道防线,使其同时识别并抵御多种类型的流感病毒。这种保护通过与传统疫苗完全不同的机制起作用——它不依赖于产生针对流感蛋白的特异性抗体。相反,这种治疗激活了称为先天淋巴细胞(ILC)的特殊免疫细胞,这些细胞就像身体的快速反应团队。这些经过训练的细胞为各种流感毒株提供广泛保护,包括可能引发未来大流行的危险禽流感变种。其意义在于有可能创造一种通用的流感保护策略,该策略可以对抗未来未知的流感毒株,为更好地应对大流行带来希望,并减少季节性流感对全球的毁灭性影响。