Li Zhibin, Zhong Haonan, Liu Xiongjun, Chiang Fu-Kuo, Li Rui, Chen Houwen, Wang Xianzhen, Wan Chubin, Wu Yuan, Wang Hui, Jiang Suihe, Zhang Xiaobin, Lu Zhaoping
Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China.
Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China.
Adv Mater. 2025 Aug 4:e10703. doi: 10.1002/adma.202510703.
Proton exchange membrane water electrolysis (PEMWE) holds substantial promise for effectively utilizing renewable energy to produce green hydrogen. However, it faces critical durability challenges due to acid-driven catalyst degradation under intermittent renewable power. Here, this study reports a dynamic dissolution-deposition equilibrium that achieves exceptional hydrogen evolution reaction (HER) stability through rational design of a high-entropy alloy-derived architecture. Dealloying FeCoNiNbPt HEA creates a porous scaffold with dual-functional components: an amorphous NbOx buffer suppressing metal dissolution, while multicomponent Pt(FeCoNi) nanocrystals synergistically enhancing HER activity (137 mV@1 A cm, 2.5 × lower than Pt/C) that thermodynamically favors redeposition. This dynamic self-adaptive mechanism maintains equilibrium under harsh operating conditions, demonstrating exceptional durability (>2200 h @1 A cm and 1 000 000 cycles). The self-supported catalysts can be easily mass-produced with 8.87 wt.% Pt loading (60% reduction vs Pt/C), indicating its industrial applicability. The equilibrium-driven design paradigm opens new avenues for industrial proton-exchange-membrane devices operating under fluctuating power.
质子交换膜水电解(PEMWE)在有效利用可再生能源生产绿色氢气方面具有巨大潜力。然而,由于在间歇性可再生电力下酸驱动的催化剂降解,它面临着关键的耐久性挑战。在此,本研究报告了一种动态溶解-沉积平衡,通过合理设计高熵合金衍生结构实现了卓越的析氢反应(HER)稳定性。脱合金化的FeCoNiNbPt高熵合金创造了一种具有双功能成分的多孔支架:非晶态NbOx缓冲层抑制金属溶解,而多组分Pt(FeCoNi)纳米晶体协同增强HER活性(在1 A cm²时为137 mV,比Pt/C低2.5倍),从热力学角度有利于再沉积。这种动态自适应机制在恶劣的操作条件下维持平衡,表现出卓越的耐久性(在1 A cm²时>2200小时和1000000次循环)。这种自支撑催化剂可以轻松地以8.87 wt.%的Pt负载量进行大规模生产(与Pt/C相比减少了60%),表明其具有工业适用性。这种平衡驱动的设计范式为在波动功率下运行的工业质子交换膜装置开辟了新途径。