Zhang Xiaofeng, Wang Zihua, Luo Jiakun, Ali Salamat, Xie Yu, Zhao Yuhang, Lu Peiao, Javed Muhammad Sufyan, Ahmad Awais, Tighezza Ammar M, Peng Kui-Qing, Han Weihua
School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China.
School of Physics and Astronomy, Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing, 100875, P. R. China.
Small. 2025 Aug 4:e05627. doi: 10.1002/smll.202505627.
Aqueous ammonium-ion hybrid supercapacitors (AAHSCs) have received significant interest due to their environmental friendliness and excellent electrochemical performance. 2D transition metal carbides and nitrides (MXenes) are promising cathode candidates for AAHSCs owing to their high conductivity and redox activity. However, their tendency to restack severely limits ion accessibility and rate performance. To address this challenge, vertically aligned 2H-MoS nanosheets are grown in situ on TiCT MXene to form interfacial heterostructures (HS-2H-MS@MXene). The heterostructure interface forms a stable built-in electric field (BIEF), which accelerates the transport of electric charge driven by the electric field force. The perpendicular orientation of 2H-MoS nanosheets effectively reduces charge transfer resistance, increasing surface area and providing abundant active sites for NH storage. As a single electrode, HS-2H-MS@MXene delivers a high specific capacitance of 722.13 F g at 1 A g, excellent rate capability (61.6% retention at 20 A g), and long-term cycling stability (90.1% retention after 5 000 cycles). When coupled with activated carbon (AC) in a full-cell configuration, the device achieves an energy density of 51.1 Wh kg at a power density of 750.6 W kg, maintaining 95.6% capacitance after 10,000 cycles. This work provides an effective strategy for developing advanced cathode materials for next-generation AAHSCs.
水系铵离子混合超级电容器(AAHSCs)因其环境友好性和优异的电化学性能而备受关注。二维过渡金属碳化物和氮化物(MXenes)因其高导电性和氧化还原活性,是AAHSCs很有前景的阴极候选材料。然而,它们的重新堆叠倾向严重限制了离子可及性和倍率性能。为应对这一挑战,在TiCT MXene上原位生长垂直排列的2H-MoS纳米片以形成界面异质结构(HS-2H-MS@MXene)。异质结构界面形成稳定的内建电场(BIEF),加速了由电场力驱动的电荷传输。2H-MoS纳米片的垂直取向有效降低了电荷转移电阻,增加了表面积,并为NH储存提供了丰富的活性位点。作为单电极,HS-2H-MS@MXene在1 A g下具有722.13 F g的高比电容、优异的倍率性能(在20 A g下保持61.6%)和长期循环稳定性(5000次循环后保持90.1%)。当与活性炭(AC)在全电池配置中耦合时,该器件在750.6 W kg的功率密度下实现了51.1 Wh kg的能量密度,在10000次循环后保持95.6%的电容。这项工作为开发下一代AAHSCs的先进阴极材料提供了一种有效策略。