Suppr超能文献

CRISPR/Cas9靶向的smpB突变揭示了其在鲍曼不动杆菌生物膜形成、运动性和抗生素敏感性中的作用。

CRISPR/Cas9-targeted smpB mutation revealing roles in biofilm formation, motility, and antibiotic susceptibility in Acinetobacter baumannii.

作者信息

Thavorasak Techit, Santajit Sirijan, Tunyong Witawat, Kong-Ngoen Thida, Reamtong Onrapak, Ampawong Sumate, Saelim Nawannaporn, Srisai Thapani, Aiumurai Pisinee, Pumirat Pornpan, Chaicumpa Wanpen, Indrawattana Nitaya

机构信息

Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

Department of Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Thailand.

出版信息

PLoS One. 2025 Aug 4;20(8):e0329638. doi: 10.1371/journal.pone.0329638. eCollection 2025.

Abstract

BACKGROUND

Acinetobacter baumannii is a multidrug-resistant pathogen and a major cause of hospital-acquired infections worldwide. Its ability to survive in harsh environments and evade antibiotic treatments underscores the urgent need for new therapeutic targets. Emerging evidence suggests that the small protein B (SmpB) may also play broader roles in bacterial virulence, including regulation of biofilm formation, motility, and stress adaptation. However, the specific contributions of SmpB to these pathogenic traits in A. baumannii remain poorly defined. Addressing this knowledge gap is essential for evaluating SmpB as a potential antimicrobial target and developing new strategies to combat multidrug-resistant infections.

METHODS

CRISPR/Cas9-mediated gene editing was used to generate a targeted smpB mutant in A. baumannii. The smpB mutant was assessed for growth, biofilm formation, motility, antibiotic susceptibility, and virulence. Biofilm was quantified via crystal violet staining and microscopy, while motility was examined using swimming, swarming, and twitching assays. Antibiotic susceptibility was evaluated using disk diffusion. Virulence was tested in the Galleria mellonella infection model. Proteomic analysis was performed to identify changes in protein expression associated with smpB disruption.

RESULTS

CRISPR/Cas9-mediated editing successfully introduced a C212T nucleotide substitution in the smpB gene, resulting in an A89G amino acid change. Growth curve analysis showed no significant difference between the wild-type and smpB mutant strains under nutrient-rich conditions. However, the mutant exhibited a significant reduction in biofilm formation (p = 0.0079) and impaired twitching motility, while swimming and swarming motility remained unaffected. Antibiotic susceptibility testing revealed increased sensitivity to ceftizoxime, piperacillin/tazobactam, and gentamicin, alongside decreased susceptibility to cefepime, tetracycline, and spectinomycin. In the G. mellonella infection model, the smpB mutant showed reduced virulence, with 84% larval survival compared to 72% in the wild type (p = 0.4183). Proteomic analysis revealed downregulation of key stress response and virulence-associated proteins, including GroEL, DnaK, RecA, and PirA, while proteins involved in ribosome maturation and transcription, such as RimP and RpoA, were upregulated. STRING network analysis supported the broad regulatory role of SmpB in biofilm formation, motility, stress adaptation, and pathogenesis.

CONCLUSION

This study demonstrates that SmpB is a key regulator of biofilm formation, twitching motility, antibiotic response, and virulence in A. baumannii. While not essential for growth under optimal conditions, smpB disruption impairs multiple pathogenic traits and alters stress-related proteomic pathways. These findings highlight the potential of SmpB as a novel antimicrobial target, offering a promising strategy to weaken bacterial virulence without promoting resistance. Targeting the trans-translation system may pave the way for innovative therapies against multidrug-resistant A. baumannii.

摘要

背景

鲍曼不动杆菌是一种多重耐药病原体,是全球医院获得性感染的主要原因。它在恶劣环境中生存和逃避抗生素治疗的能力突出了对新治疗靶点的迫切需求。新出现的证据表明,小蛋白B(SmpB)可能在细菌毒力中也发挥更广泛的作用,包括生物膜形成、运动性和应激适应的调节。然而,SmpB对鲍曼不动杆菌这些致病特性的具体贡献仍不清楚。填补这一知识空白对于评估SmpB作为潜在抗菌靶点以及制定对抗多重耐药感染的新策略至关重要。

方法

使用CRISPR/Cas9介导的基因编辑在鲍曼不动杆菌中产生靶向smpB突变体。对smpB突变体进行生长、生物膜形成、运动性、抗生素敏感性和毒力评估。通过结晶紫染色和显微镜对生物膜进行定量,同时使用游泳、群游和颤动试验检查运动性。使用纸片扩散法评估抗生素敏感性。在大蜡螟感染模型中测试毒力。进行蛋白质组分析以鉴定与smpB破坏相关的蛋白质表达变化。

结果

CRISPR/Cas9介导的编辑成功地在smpB基因中引入了C212T核苷酸替换,导致A89G氨基酸变化。生长曲线分析表明,在营养丰富的条件下,野生型和smpB突变体菌株之间没有显著差异。然而,突变体的生物膜形成显著减少(p = 0.0079),颤动运动受损,而游泳和群游运动不受影响。抗生素敏感性测试显示对头孢唑肟、哌拉西林/他唑巴坦和庆大霉素的敏感性增加,同时对头孢吡肟、四环素和壮观霉素的敏感性降低。在大蜡螟感染模型中,smpB突变体的毒力降低,幼虫存活率为84%,而野生型为72%(p = 0.4183)。蛋白质组分析显示关键应激反应和毒力相关蛋白下调,包括GroEL、DnaK、RecA和PirA,而参与核糖体成熟和转录的蛋白,如RimP和RpoA,则上调。STRING网络分析支持SmpB在生物膜形成、运动性、应激适应和发病机制中的广泛调节作用。

结论

本研究表明,SmpB是鲍曼不动杆菌生物膜形成、颤动运动、抗生素反应和毒力的关键调节因子。虽然在最佳条件下对生长不是必需的,但smpB破坏会损害多种致病特性并改变与应激相关的蛋白质组途径。这些发现突出了SmpB作为新型抗菌靶点的潜力,为削弱细菌毒力而不促进耐药性提供了一种有前景的策略。靶向反式翻译系统可能为对抗多重耐药鲍曼不动杆菌的创新疗法铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a40/12321068/bddb22a94455/pone.0329638.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验