Suppr超能文献

用于锂离子电池中高倍率富镍正极材料的集成锂离子传输通道的多尺度构建

Multiscale Construction of Integrated Lithium ion Transport Channels for High-Rate Ni-Rich Cathode Materials in Lithium ion Batteries.

作者信息

Zhang Xin, Jian Jiyuan, Sun Dandan, Li Sai, Qiao Yixuan, Xiao Rui, Wu Tao, Lin Shuang, Huo Hua, Ma Yulin, Yin Geping, Zuo Pengjian, Cheng Xinqun, Han Guokang, Du Jiannan, Du Chunyu

机构信息

State Key Laboratory of Space Power-sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China.

Zibo Torch Energy Co., Ltd., 19 Nanluo Road, Zhangdian, Zibo, Shandong, 255051, P. R. China.

出版信息

Small. 2025 Aug 5:e07646. doi: 10.1002/smll.202507646.

Abstract

Ni-rich layered oxide cathodes have garnered significant attention in the field of lithium ion batteries (LIBs) due to their exceptionally high energy density. Nevertheless, their performance in terms of rapid charging/discharging and cycle life remains suboptimal. In this study, an integrated, multi-scale optimization of Li⁺ transport kinetics from the interface to the near-surface layer of Ni-rich cathode materials is achieved through a synergistic optimization strategy of constructing a highly conductive interface layer and a lattice channel optimization layer. Experimental findings show that a LiPO/LiPO composite ion transport layer with high ionic conductivity is in situ constructed on the cathode surface, which not only improved the Li⁺ migration kinetics but also suppressed the unfavorable side reactions at the electrode/electrolyte interface. The incorporation of P-Al co-doping in the near-surface layer significantly reduced the intrinsic diffusion energy barrier of lithium ions and effectively alleviated the lattice volume change and the degradation of the surface lattice structure during the cycling process. Consequently, the modified cathode material exhibits excellent rate performance (154 mAh g at 10C) and cycle stability (89.6% capacity retention after 200 cycles). This work demonstrates that the synergistic optimization of multiscale lithium ion transport channels is a viable approach for achieving high-performance Ni-rich cathodes.

摘要

富镍层状氧化物阴极由于其极高的能量密度而在锂离子电池(LIBs)领域备受关注。然而,它们在快速充放电和循环寿命方面的性能仍不尽人意。在本研究中,通过构建高导电界面层和晶格通道优化层的协同优化策略,实现了从富镍阴极材料的界面到近表面层的Li⁺传输动力学的集成多尺度优化。实验结果表明,在阴极表面原位构建了具有高离子电导率的LiPO/LiPO复合离子传输层,这不仅改善了Li⁺迁移动力学,还抑制了电极/电解质界面处不利的副反应。在近表面层中引入P-Al共掺杂显著降低了锂离子的本征扩散能垒,并有效缓解了循环过程中的晶格体积变化和表面晶格结构的降解。因此,改性后的阴极材料表现出优异的倍率性能(10C时为154 mAh g)和循环稳定性(200次循环后容量保持率为89.6%)。这项工作表明,多尺度锂离子传输通道的协同优化是实现高性能富镍阴极的可行方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验