Suppr超能文献

基于知识的质量保证工具开发下小儿颅脊髓照射图谱与神经网络自动分割方法的比较分析

Comparative Analysis of Atlas and Neural Network Autosegmentation Methods for Pediatric Craniospinal Irradiation With the Development of a Knowledge-Based Quality Assurance Tool.

作者信息

Ates Ozgur, Tsui James Man Git, Wooten Zachary, Hutcheson Sydney, Zhang Rico, Becksfort Jared, Merchant Thomas E, Hua Chia-Ho

机构信息

Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee.

Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.

出版信息

Adv Radiat Oncol. 2025 Jul 28;10(9):101847. doi: 10.1016/j.adro.2025.101847. eCollection 2025 Sep.

Abstract

PURPOSE

This study aims to evaluate the performance of Atlas and neural network autosegmentation methods and develop a knowledge-based quality assurance (QA) tool for pediatric craniospinal irradiation (CSI).

METHODS AND MATERIALS

Autosegmentation was performed on 63 CSI patients using 3 methods: Atlas, commercial artificial intelligence (AI), and in-house AI. The performance of these methods was analyzed using 13 quantitative metrics, comprising 6 overlap and 7 distance metrics, across 13 critical organs and a linear mixed-effect model analysis was performed. Additionally, a knowledge-based QA tool was developed by leveraging distinctive computed tomography number distributions from 100 CSI patients for each organ, using the kernel density estimation (KDE) method to ensure robust error detection and validation. The QA tool was tested on 50 CSI cases by comparing baseline KDEs from 100 CSI patients.

RESULTS

The linear mixed-effect analysis showed that the in-house AI outperformed both the Atlas and commercial AI methods in overlap and distance metrics. The in-house AI outperformed the commercial AI with a higher average overlap of 0.01 ± 0.01 and surpassed the Atlas method by 0.02 ± 0.01. In terms of distance metrics, the in-house AI matched the commercial AI (-0.31 ± 0.72 mm) and exceeded the Atlas method by 3.10 ± 0.68 mm. Paired t-tests showed the in-house AI was superior to the Atlas in 13.0% of cases, while the Atlas outperformed the in-house method in 8.9% of comparisons. Similarly, the in-house AI was better than the commercial AI in 35.3% of tests, with the commercial AI outperforming in 32.7%. The QA tool results demonstrated that 100% agreement with baseline KDEs occurred in 46.4% of tests for Atlas, 46.5% for the commercial AI, and 60.7% for the in-house AI.

CONCLUSIONS

The in-house AI excelled over the Atlas and commercial AI methods in autosegmentation accuracy for pediatric CSI patients. Furthermore, a knowledge-based QA tool enables clinicians to detect and correct gross errors in autosegmentation.

摘要

目的

本研究旨在评估图谱法和神经网络自动分割方法的性能,并开发一种基于知识的质量保证(QA)工具,用于小儿颅脊髓照射(CSI)。

方法和材料

使用三种方法对63例CSI患者进行自动分割:图谱法、商业人工智能(AI)和内部人工智能。使用13个定量指标分析这些方法的性能,包括6个重叠指标和7个距离指标,涉及13个关键器官,并进行线性混合效应模型分析。此外,通过利用100例CSI患者每个器官独特的计算机断层扫描数值分布,采用核密度估计(KDE)方法开发了一种基于知识的QA工具,以确保可靠的误差检测和验证。通过比较100例CSI患者的基线KDE,在50例CSI病例上对QA工具进行了测试。

结果

线性混合效应分析表明,内部人工智能在重叠和距离指标方面优于图谱法和商业人工智能方法。内部人工智能的平均重叠率比商业人工智能高0.01±0.01,比图谱法高0.02±0.01,表现更优。在距离指标方面,内部人工智能与商业人工智能相当(-0.31±0.72毫米),比图谱法超出3.10±0.68毫米。配对t检验显示,内部人工智能在13.0%的病例中优于图谱法,而图谱法在8.9%的比较中优于内部方法。同样,内部人工智能在35.3%的测试中优于商业人工智能,商业人工智能在32.7%的测试中表现更优。QA工具的结果表明,图谱法在46.4%的测试中、商业人工智能在46.5%的测试中以及内部人工智能在60.7%的测试中与基线KDE完全一致。

结论

对于小儿CSI患者,内部人工智能在自动分割准确性方面优于图谱法和商业人工智能方法。此外,基于知识的QA工具使临床医生能够检测和纠正自动分割中的重大错误。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10de/12319244/259d0ea9c959/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验