Suppr超能文献

解耦控制一氧化碳和硝酸盐还原中间体以实现高效串联尿素电合成

Decoupled Control of CO and Nitrate Reduction Intermediates to Enable Efficient Tandem Urea Electrosynthesis.

作者信息

Liu Jiawei, Duan Ruihuan, Xu Yifan, Zhang Chu, Lv Chade, Hu Erhai, Gao Jiajian, Han Bo, Lee Carmen, Liu Zheng, Li Li, Wu Dongshuang, Ng Man-Fai, Yan Qingyu

机构信息

School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore.

Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.

出版信息

ACS Nano. 2025 Aug 19;19(32):29646-29656. doi: 10.1021/acsnano.5c09017. Epub 2025 Aug 5.

Abstract

The direct electrochemical coupling of CO and nitrate (NO) offers a sustainable alternative to the energy-intensive Bosch-Meiser process for urea synthesis. However, achieving efficient C-N coupling at single active sites remains challenging due to the kinetic mismatch between CO and NO reduction, as well as the intricate multistep proton-coupled electron transfer process. Here, we present a sacrificial template-based strategy to synthesize a two-dimensional (2D)/zero-dimensional (0D) FePS/AgS heterostructure catalyst, enabling the tandem coreduction of CO and nitrate for urea electrosynthesis. Electrochemical studies, measurements, and theoretical calculations together demonstrate that the heterostructures with strongly coupled interfaces not only modulate the electronic structure but also enable decoupled control over NO and CO reduction. FePS offers a moderate conversion rate from NO to ammonia, generating *NH intermediates while mitigating overhydrogenation to ammonia. Meanwhile, AgS with optimized loading facilitates efficient conversion of CO to CO, enabling the diffusion and electrophilic attack of CO on *NH, thereby forming the critical *CONH intermediate for urea production. As a result, the FePS/AgS tandem catalyst achieves a high urea yield rate of 1160.9 μg h mg with a Faradaic efficiency (FE) of 15.4% at -0.7 vs reversible hydrogen electrode, outperforming the individual FePS nanosheets and AgS nanoparticles. This study provides key insights into the rational design of heterostructure catalysts that exhibit strong interfacial interactions and allow for decoupled control over parallel reactions to enhance complex coupling processes.

摘要

一氧化碳(CO)和硝酸盐(NO)的直接电化学偶联为尿素合成中能源密集型的博施-迈泽尔工艺提供了一种可持续的替代方案。然而,由于CO和NO还原之间的动力学不匹配以及复杂的多步质子耦合电子转移过程,在单一活性位点实现高效的C-N偶联仍然具有挑战性。在此,我们提出一种基于牺牲模板的策略来合成二维(2D)/零维(0D)FePS/AgS异质结构催化剂,实现用于尿素电合成的CO和硝酸盐的串联共还原。电化学研究、测量和理论计算共同表明,具有强耦合界面的异质结构不仅能调节电子结构,还能实现对NO和CO还原的解耦控制。FePS提供了从NO到氨的适度转化率,生成NH中间体,同时减轻过度氢化生成氨的情况。与此同时,具有优化负载量的AgS促进了CO向CO的高效转化,使CO能够扩散并对NH进行亲电攻击,从而形成尿素生产的关键*CONH中间体。结果,FePS/AgS串联催化剂在相对于可逆氢电极-0.7 V时实现了1160.9 μg h mg的高尿素产率和15.4%的法拉第效率(FE),优于单独的FePS纳米片和AgS纳米颗粒。这项研究为合理设计具有强界面相互作用并能对平行反应进行解耦控制以增强复杂偶联过程的异质结构催化剂提供了关键见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验