Ma Yao, Li Yunpeng, Ding Sasa, Sun Peipei
Oral Health Prev Dent. 2025 Aug 5;23:391-402. doi: 10.3290/j.ohpd.c_2124.
OBJECTIVE: To develop a risk score model based on drug-sensitivity-related genes to predict the prognosis of patients with oral squamous cell carcinoma (OSCC). METHODS AND MATERIALS: In this study, transcriptome from OSCC patients was downloaded from the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases, and differential gene expression analysis was performed using R's 'limma' package. LASSO Cox regression identified key prognostic genes. We stratified patients into low- and high-risk groups and estimated survival rates using Kaplan-Meier. Gene set enrichment analysis (GSEA) and immune infiltration analysis were conducted to understand the potential pathways and tumour microenvironment. A nomogram model was constructed for prognosis prediction. RESULTS: Our study identified 118 candidate genes from three data sets and narrowed them down to four prognostic genes (IGF2BP2, PLAU, CEP55, CMYA5) using univariate Cox regression and LASSO Cox regression. A risk score model was developed which could predict patient prognosis. The model's prognostic value was independent of age, gender, and stage. A nomogram model incorporating risk score and age was constructed for personalised survival prediction. Tumour mutation burden analysis showed that the mutation rate of TP53 was higher in the high-risk group. Immune landscape analysis uncovered distinct immune cell infiltration patterns and immune checkpoint expression levels between different risk groups, suggesting implications for immunotherapy strategies. CONCLUSION: The risk score model constructed using drug-sensitivity-related genes IGF2BP2, PLAU, CEP55, and CMYA5 may predict the prognosis of OSCC patients.
目的:基于药物敏感性相关基因开发一种风险评分模型,以预测口腔鳞状细胞癌(OSCC)患者的预后。 方法与材料:在本研究中,从癌症基因组图谱(TCGA)和国际癌症基因组联盟(ICGC)数据库下载OSCC患者的转录组,并使用R语言的“limma”包进行差异基因表达分析。LASSO Cox回归确定关键预后基因。我们将患者分为低风险和高风险组,并使用Kaplan-Meier法估计生存率。进行基因集富集分析(GSEA)和免疫浸润分析以了解潜在途径和肿瘤微环境。构建列线图模型用于预后预测。 结果:我们的研究从三个数据集中鉴定出118个候选基因,并通过单变量Cox回归和LASSO Cox回归将其缩小至四个预后基因(IGF2BP2、PLAU、CEP55、CMYA5)。开发了一种可预测患者预后的风险评分模型。该模型的预后价值独立于年龄、性别和分期。构建了一个纳入风险评分和年龄的列线图模型用于个性化生存预测。肿瘤突变负荷分析表明,高风险组中TP53的突变率更高。免疫景观分析揭示了不同风险组之间不同的免疫细胞浸润模式和免疫检查点表达水平,提示对免疫治疗策略的影响。 结论:使用药物敏感性相关基因IGF2BP2、PLAU、CEP55和CMYA5构建的风险评分模型可能预测OSCC患者的预后。
Technol Cancer Res Treat. 2024
Periodontol 2000. 2024-10
Periodontol 2000. 2024-10
Periodontol 2000. 2024-10
Periodontol 2000. 2024-10
J Dent Res. 2024-2
Periodontol 2000. 2024-10
Diagnostics (Basel). 2023-5-17