Sarafidou Mirva, Forys Aleksander, Godzierz Marcin, Kobyliukh Anastasiia, Trzebicka Barbara, Pispas Stergios, Koutinas Apostolis, Tsouko Erminta
Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece.
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland.
Biomacromolecules. 2025 Sep 8;26(9):5657-5669. doi: 10.1021/acs.biomac.5c00397. Epub 2025 Aug 5.
This study explored the structural modification of bacterial cellulose (BC) through enzymatic hydrolysis using varying cellulase activities and substrate concentrations. Optimal hydrolysis conditions (50 U/g of BC; 20 g/L of BC) were established to balance recovery and homogeneity (yielding BNC1). Hydrolysis was further combined with nonthermal plasma by suspending BC into plasma-activated water (PAW) prior to hydrolysis (BNC2). In another approach, BC suspensions were pretreated using a plasma bubble reactor followed by hydrolysis (BNC3). BNC1 and BNC2 yields were similar (∼50%), suggesting that PAW regulated the pH during hydrolysis. BNC3 yield was significantly higher (78%) compared to BNC1, indicating that the generated radicals promoted chain modifications while minimizing glucose/cellobiose release. That dual approach led to BC defibrillation, as revealed by AFM/cryo-TEM. The reduction in melting temperature observed was correlated with a crystallinity drop. Dual enzymatic and plasma-assisted strategies offer novel-intriguing avenues to fine-tune the properties of cellulose nanocomposites for sustainable applications.
本研究通过使用不同的纤维素酶活性和底物浓度进行酶水解,探索了细菌纤维素(BC)的结构改性。建立了最佳水解条件(50 U/g BC;20 g/L BC)以平衡回收率和均匀性(得到BNC1)。在水解之前,通过将BC悬浮于等离子体活化水(PAW)中,进一步将水解与非热等离子体相结合(BNC2)。在另一种方法中,使用等离子体气泡反应器对BC悬浮液进行预处理,然后进行水解(BNC3)。BNC1和BNC2的产率相似(约50%),表明PAW在水解过程中调节了pH值。与BNC1相比,BNC3的产率显著更高(78%),这表明所产生的自由基促进了链修饰,同时使葡萄糖/纤维二糖的释放最小化。如原子力显微镜/冷冻透射电子显微镜所示,这种双重方法导致了BC的解纤。观察到的熔点降低与结晶度下降相关。酶促和等离子体辅助的双重策略为微调纤维素纳米复合材料的性能以实现可持续应用提供了新颖有趣的途径。