Sucholeiki Robert L, Jochum Elena, Chen Peili, Wessely Oliver, Galasinski Shelly, Chapman Arlene B
University of Chicago Medicine Section of Nephrology.
Cleveland Clinic Lerner Research Institute.
Clin J Am Soc Nephrol. 2025 Aug 5. doi: 10.2215/CJN.0000000801.
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of end-stage kidney disease. Disease severity depends on the causative gene (PKD1 versus PKD2) and whether its pathogenic variant is truncating or non-truncating. However, the association between ADPKD severity and the location of pathogenic variants is controversial. An emerging understanding of the functional domains of the PKD genes may enable further investigation of the impact of variant location on disease severity.
We studied longitudinal height-adjusted total kidney volume (htTKV), estimated glomerular filtration rate (eGFR), and Mayo Imaging Class (MIC) distributions among a cohort of 332 patients with early-stage ADPKD in the HALT A clinical trial dataset to examine the impact of PKD1 variant location on disease progression. HALT A provided Sanger sequencing confirmation for each patient's pathogenic variant. Truncating (N=222) and non-truncating genetic variants (N=110) were assigned by location to key polycystin-1 functional domains. We compared patients' longitudinal htTKV and eGFR trajectories and MIC distributions for truncating versus non-truncating status and the protein domain location of PKD1 variants.
PKD1 truncating variants demonstrated similar disease progression to PKD1 non-truncating variants overall, and disease severity did not differ by domain location for truncating variants. However, patients with PKD1 non-truncating variants in the REJ (8.6% per year; 95% CI [6.9-10.2]) and PLAT (8.5% per year [5.9-11.2]) domains demonstrated significantly greater htTKV growth compared to PKD1 non-truncating variants in the C-type lectin (3.6% per year [1.1-6.1]) and PKD repeat (4.4% per year [2.3-6.5]) domains (p<0.001). Variants in these fast- and slow-progressing regions also showed clinically significant differences in MIC distribution (p=0.008) and eGFR rate of change (-3.51 versus -2.24 ml/min/year; p=0.09).
Our findings demonstrate that the domain locations of non-truncating variants in PKD1 should be explored as potential prognostic markers of early-stage ADPKD progression.
常染色体显性多囊肾病(ADPKD)是终末期肾病最常见的单基因病因。疾病严重程度取决于致病基因(PKD1与PKD2)及其致病变异是否为截短型或非截短型。然而,ADPKD严重程度与致病变异位置之间的关联存在争议。对PKD基因功能域的新认识可能有助于进一步研究变异位置对疾病严重程度的影响。
我们在HALT A临床试验数据集中研究了332例早期ADPKD患者队列的纵向身高校正后总肾体积(htTKV)、估计肾小球滤过率(eGFR)和梅奥影像分级(MIC)分布,以检验PKD1变异位置对疾病进展的影响。HALT A为每位患者的致病变异提供了桑格测序确认。根据位置将截短型(N = 222)和非截短型基因变异(N = 110)分配到关键的多囊蛋白-1功能域。我们比较了患者截短型与非截短型状态以及PKD1变异蛋白结构域位置的纵向htTKV和eGFR轨迹及MIC分布。
总体而言,PKD1截短型变异与PKD1非截短型变异的疾病进展相似,截短型变异的疾病严重程度在不同结构域位置无差异。然而,与C型凝集素结构域(每年8.6%;95% CI [6.9 - 10.2])和PKD重复结构域(每年8.5% [5.9 - 11.2])中的PKD1非截短型变异相比,REJ结构域(每年3.6% [1.1 - 6.1])和PLAT结构域(每年4.4% [2.3 - 6.5])中存在PKD1非截短型变异的患者htTKV增长显著更高(p<0.001)。这些快速和缓慢进展区域的变异在MIC分布(p = 0.008)和eGFR变化率(-3.51与-2.24 ml/min/年;p = 0.09)方面也显示出临床显著差异。
我们的研究结果表明,PKD1中非截短型变异的结构域位置应作为早期ADPKD进展的潜在预后标志物进行探索。