Suppr超能文献

整合时空动力学与结构连接性以实现颞叶癫痫致痫区的自动定位

Integration of Spatiotemporal Dynamics and Structural Connectivity for Automated Epileptogenic Zone Localization in Temporal Lobe Epilepsy.

作者信息

Xiao Linxia, Zheng Qingqing, Li Sixian, Wei Yanjie, Si Weixin, Pan Yi

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2025;33:3065-3075. doi: 10.1109/TNSRE.2025.3595906.

Abstract

Accurate localization of the epileptogenic zone (EZ) is essential for surgical success in temporal lobe epilepsy. While stereoelectroencephalography (SEEG) and structural magnetic resonance imaging (MRI) provide complementary insights, existing unimodal methods fail to fully capture epileptogenic brain activity, and multimodal fusion remains challenging due to data complexity and surgeon-dependent interpretations. To address these issues, we proposed a novel multimodal framework to improve EZ localization with SEEG-drived electrophysiology with structural connectivity in temporal lobe epilepsy. By retrospectively analyzing SEEG, post-implant Computed Tomography (CT) and MRI (T1 & Diffusion Tensor Imaging (DTI)) data from 15 patients, we reconstructed SEEG electrode positions and obtained the SEEG and structural connectivity fusion features. We then proposed a spatiotemporal co-attention deep neural network (ST-CANet) to identify the fusion features, categorizing electrodes into seizure onset zone (SOZ), propagation zone (PZ), and non-involved zone (NIZ). Anatomical EZ boundaries were delineated by fusing the electrode position and classification information on brain atlas. The proposed method was evaluated based on the identification and localization performance of three epilepsy-related zones. The experiment results demonstrate that our method achieves 98.08% average accuracy and outperforms other identification methods, and improves the localization with Dice similarity coefficients (DSC) of 95.65% (SOZ), 92.13% (PZ), and 99.61% (NIZ), aligning with clinically validated surgical resection areas. This multimodal fusion strategy based on electrophysiological and structural connectivity information promises to assist neurosurgeons in accurately localizing EZ and may find broader applications in preoperative planning for epilepsy surgeries.

摘要

致痫区(EZ)的精确定位对于颞叶癫痫手术的成功至关重要。虽然立体定向脑电图(SEEG)和结构磁共振成像(MRI)提供了互补的见解,但现有的单模态方法无法完全捕捉致痫性脑活动,并且由于数据复杂性和依赖外科医生的解释,多模态融合仍然具有挑战性。为了解决这些问题,我们提出了一种新颖的多模态框架,以利用SEEG驱动的电生理与颞叶癫痫中的结构连接性来改善EZ定位。通过回顾性分析15例患者的SEEG、植入后计算机断层扫描(CT)和MRI(T1及扩散张量成像(DTI))数据,我们重建了SEEG电极位置并获得了SEEG与结构连接性融合特征。然后,我们提出了一种时空协同注意力深度神经网络(ST-CANet)来识别融合特征,将电极分类为癫痫发作起始区(SOZ)、传播区(PZ)和非受累区(NIZ)。通过将电极位置和大脑图谱上的分类信息融合来描绘解剖学EZ边界。基于三个癫痫相关区域的识别和定位性能对所提出的方法进行了评估。实验结果表明,我们的方法平均准确率达到98.08%,优于其他识别方法,并以95.65%(SOZ)、92.13%(PZ)和99.61%(NIZ)的骰子相似系数(DSC)改善了定位,与临床验证的手术切除区域相符。这种基于电生理和结构连接性信息的多模态融合策略有望协助神经外科医生准确地定位EZ,并可能在癫痫手术的术前规划中找到更广泛的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验