Song Yujing, Stephens Andrew D, Deng Huiyin, Füredi Adrienne D, Su Shiuan-Haur, Ye Yuxuan, Chen Yuxiang, Newstead Michael, Yin Qingtian, Lehto Jason, Fahim Zeshan, Singer Benjamin H, Kurabayashi Katsuo
Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI, 48109, USA.
Biosens Bioelectron. 2025 Nov 15;288:117820. doi: 10.1016/j.bios.2025.117820. Epub 2025 Jul 24.
Time-course monitoring of blood biomarkers with rapid turnaround has the potential to revolutionize the diagnosis, stratification of phenotypes, and therapeutic/prognostic approaches for various acute inflammatory diseases in both clinical and preclinical studies. Current approaches, however, are hampered by slow turnaround times and large sample volume requirements, limiting the exploration of disease mechanisms and therapeutic strategies. Here, we developed a microfluidic digital ELISA platform prototype, combining single-molecule counting with whole blood assay capability for the first time from small animal models. This platform is semi-automated and enables repeated, rapid biomarker monitoring with just 3.5 μL of whole blood collected from the tail. Our platform demonstrated high sensitivity and multiplexity, allowing real-time cytokine profiling within a 2-h turnaround. Using a murine sepsis model, we achieved precise temporal monitoring of cytokine levels, demonstrating prognostic capability by correlating early-stage cytokine levels with a liver-injury biomarker. This microfluidic platform enables high temporal resolution and rapid monitoring of biomarker dynamics in a single mouse using freshly collected whole blood, significantly reducing the number of animals needed for preclinical studies. This technology has strong potential to transform ICU therapeutic strategies and preclinical research, enabling personalized treatment based on real-time biomarker profiles.
对血液生物标志物进行快速周转的时间进程监测,有可能在临床和临床前研究中彻底改变各种急性炎症性疾病的诊断、表型分层以及治疗/预后方法。然而,目前的方法受到周转时间长和样本量要求大的阻碍,限制了对疾病机制和治疗策略的探索。在此,我们首次从小动物模型开发了一种微流控数字酶联免疫吸附测定(ELISA)平台原型,将单分子计数与全血检测能力相结合。该平台是半自动化的,仅需从尾部采集3.5微升全血,就能实现重复、快速的生物标志物监测。我们的平台显示出高灵敏度和多重性,能够在2小时的周转时间内进行实时细胞因子分析。使用小鼠脓毒症模型,我们实现了对细胞因子水平的精确时间监测,通过将早期细胞因子水平与肝损伤生物标志物相关联,证明了其预后能力。这种微流控平台能够使用新鲜采集的全血,在单个小鼠中实现高时间分辨率和生物标志物动态的快速监测,显著减少临床前研究所需的动物数量。这项技术具有变革重症监护病房(ICU)治疗策略和临床前研究的强大潜力,能够基于实时生物标志物谱实现个性化治疗。