Chen Hongyu, Zhang Jingrui, Yin Yitong, Liu Wendi, Wang Jianye, Zhang Ling, He Bing, Wei Shuxian, Liu Siyuan, Sun Zhe, Wei Baojun, Wang Zhaojie, Lu Xiaoqing
College of Science, China University of Petroleum (East China), Qingdao 266580, PR China.
Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
J Colloid Interface Sci. 2025 Dec 15;700(Pt 3):138612. doi: 10.1016/j.jcis.2025.138612. Epub 2025 Aug 5.
The poor stability and slow kinetics of VO-based electrodes present significant challenges for their implementation in aqueous zinc-ion batteries (ZIBs). Herein, a homologous 2VO-3VN heterostructure was fabricated through metal-assisted etching and hydrothermal reaction. The metal-assisted etching creates spatial channels that facilitate rapid ion and electron transport. Additionally, the interfacial strain induced by the hybridization of vanadium nitride significantly stabilizes the layered structure and enhances electron mobility, enabling highly reversible zinc-ion storage and improved reaction kinetics. The resultant 2VO-3VN heterostructure as a cathode material demonstrates a high reversible capacity of 398 mA h g at 0.1 A g, a remarkable rate capability of 103.2 mA h g at 4 A g, and outstanding cycling stability (125 mA h g at 4 A g with 83 % capacity retention after 1000 cycles). Furthermore, ex-situ XRD and ex-situ XPS analyses confirm the effective intercalation and deintercalation of Zn ions, as well as the structural reversibility of 2VO-3VN electrode during charge-discharge processes, highlighting its superior Zn ions storage capabilities and long-term cycling stability. This study elucidates the fundamental principles of strain engineering in homologous vanadium-based heterostructures, providing valuable insights for designing advanced vanadium-based composite materials toward energy storage.
基于VO的电极稳定性差、动力学缓慢,这给其在水系锌离子电池(ZIBs)中的应用带来了重大挑战。在此,通过金属辅助蚀刻和水热反应制备了一种同系的2VO-3VN异质结构。金属辅助蚀刻产生了有利于离子和电子快速传输的空间通道。此外,氮化钒杂化诱导的界面应变显著稳定了层状结构并提高了电子迁移率,实现了高度可逆的锌离子存储并改善了反应动力学。所得的2VO-3VN异质结构作为阴极材料,在0.1 A g时展现出398 mA h g的高可逆容量,在4 A g时具有103.2 mA h g的显著倍率性能,以及出色的循环稳定性(在4 A g时为125 mA h g,1000次循环后容量保持率为83%)。此外,非原位XRD和非原位XPS分析证实了Zn离子的有效嵌入和脱出,以及2VO-3VN电极在充放电过程中的结构可逆性,突出了其优异的锌离子存储能力和长期循环稳定性。本研究阐明了同系钒基异质结构中应变工程的基本原理,为设计用于储能的先进钒基复合材料提供了有价值的见解。