Wong Derek A, Shaver Zachary M, Cabezas Maria D, Daniel-Ivad Martin, Warfel Katherine F, Prasanna Deepali V, Sobol Sarah E, Fernandez Regina, Tobias Fernando, Filip Szymon K, Hulbert Sophia W, Faull Peter, Nicol Robert, DeLisa Matthew P, Balskus Emily P, Karim Ashty S, Jewett Michael C
Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
Nat Commun. 2025 Aug 5;16(1):7215. doi: 10.1038/s41467-025-60526-6.
Post-translational modifications (PTMs) are important for the stability and function of many therapeutic proteins and peptides. Current methods for studying and engineering PTMs are often limited by low-throughput experimental techniques. Here we describe a generalizable, in vitro workflow coupling cell-free gene expression (CFE) with AlphaLISA for the rapid expression and testing of PTM installing proteins. We apply our workflow to two representative classes of peptide and protein therapeutics: ribosomally synthesized and post-translationally modified peptides (RiPPs) and glycoproteins. First, we demonstrate how our workflow can be used to characterize the binding activity of RiPP recognition elements, an important first step in RiPP biosynthesis, and be integrated into a biodiscovery pipeline for computationally predicted RiPP products. Then, we adapt our workflow to study and engineer oligosaccharyltransferases (OSTs) involved in protein glycan coupling technology, leading to the identification of mutant OSTs and sites within a model vaccine carrier protein that enable high efficiency production of glycosylated proteins. We expect that our workflow will accelerate design-build-test-learn cycles for engineering PTMs.
翻译后修饰(PTMs)对于许多治疗性蛋白质和肽的稳定性及功能至关重要。当前用于研究和工程化PTMs的方法常常受到低通量实验技术的限制。在此,我们描述了一种通用的体外工作流程,该流程将无细胞基因表达(CFE)与AlphaLISA相结合,用于快速表达和测试安装有PTM的蛋白质。我们将该工作流程应用于两类具有代表性的肽和蛋白质疗法:核糖体合成且翻译后修饰的肽(RiPPs)和糖蛋白。首先,我们展示了该工作流程如何用于表征RiPP识别元件的结合活性,这是RiPP生物合成中的重要第一步,并可整合到用于计算预测RiPP产物的生物发现流程中。然后,我们调整工作流程以研究和工程化参与蛋白质聚糖偶联技术的寡糖基转移酶(OSTs),从而鉴定出突变型OSTs以及模型疫苗载体蛋白内能够高效生产糖基化蛋白的位点。我们期望该工作流程将加速用于工程化PTMs的设计 - 构建 - 测试 - 学习循环。