Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.
Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States.
ACS Synth Biol. 2024 Oct 18;13(10):3389-3399. doi: 10.1021/acssynbio.4c00471. Epub 2024 Oct 7.
The design and optimization of metabolic pathways, genetic systems, and engineered proteins rely on high-throughput assays to streamline design-build-test-learn cycles. However, assay development is a time-consuming and laborious process. Here, we create a generalizable approach for the tailored optimization of automated cell-free gene expression (CFE)-based workflows, which offers distinct advantages over in vivo assays in reaction flexibility, control, and time to data. Centered around designing highly accurate and precise transfers on the Echo Acoustic Liquid Handler, we introduce pilot assays and validation strategies for each stage of protocol development. We then demonstrate the efficacy of our platform by engineering transcription factor-based biosensors. As a model, we rapidly generate and assay libraries of 127 MerR and 134 CadR transcription factor variants in 3682 unique CFE reactions in less than 48 h to improve limit of detection, selectivity, and dynamic range for mercury and cadmium detection. This was achieved by assessing a panel of ligand conditions for sensitivity (to 0.1, 1, 10 μM Hg and 0, 1, 10, 100 μM Cd for MerR and CadR, respectively) and selectivity (against Ag, As, Cd, Co, Cu, Hg, Ni, Pb, and Zn). We anticipate that our Echo-based, cell-free approach can be used to accelerate multiple design workflows in synthetic biology.
代谢途径、遗传系统和工程蛋白的设计和优化依赖于高通量测定来简化设计-构建-测试-学习循环。然而,测定方法的开发是一个耗时且费力的过程。在这里,我们创建了一种可普遍应用的方法,用于定制优化自动化无细胞基因表达(CFE)为基础的工作流程,与体内测定相比,该方法在反应灵活性、控制和数据获取时间方面具有明显优势。我们以设计在 Echo Acoustic 液体处理机上进行的高度精确和准确的转移为核心,为每个协议开发阶段引入了初步测定和验证策略。然后,我们通过工程转录因子生物传感器来展示我们平台的功效。作为一个模型,我们在不到 48 小时内,在 3682 个独特的 CFE 反应中快速生成和测定了 127 个 MerR 和 134 个 CadR 转录因子变体的文库,以提高汞和镉检测的检测限、选择性和动态范围。这是通过评估一组配体条件的敏感性(对 MerR 和 CadR 分别为 0.1、1、10 μM Hg 和 0、1、10、100 μM Cd)和选择性(针对 Ag、As、Cd、Co、Cu、Hg、Ni、Pb 和 Zn)来实现的。我们预计,我们基于 Echo 的无细胞方法可以用于加速合成生物学中的多个设计工作流程。