Suppr超能文献

用于稳定钙钛矿太阳能电池的机械坚固且导电的C60-SnO电子传输双层结构

Mechanically Robust and yet Electrically Conductive C60-SnO Electron Transporting Bilayer in Stable Perovskite Solar Cells.

作者信息

Amornkitbamrung Urasawadee, Xu Yinyan, Gibson Aedan, Wang Canjie, In Yongjae, Jeong Hyeon Jun, Rhee Ryan, Shin Hyunjung

机构信息

Nature Inspired Materials Processing Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.

Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.

出版信息

Langmuir. 2025 Aug 19;41(32):21500-21508. doi: 10.1021/acs.langmuir.5c02273. Epub 2025 Aug 6.

Abstract

Inverted-type perovskite solar cells (-PSCs) have demonstrated superior power conversion efficiencies (PCEs). The bilayer of C60-SnO as an electron transport layer (ETL) is often used in -PSCs. It is known, however, that the interface is quite fragile mechanically under thermal cycling. For long-term stability, the interface between the bilayer should be refined. Herein, we propose a surface treatment method on C60 to enhance the mechanical robustness between the ETL bilayer and promote efficient electron transport. The deposition of SnO by atomic layer deposition on ozone-treated C60 surfaces led to a reduced incubation time, as evidenced by an increase in growth per cycle (GPC) with proper ohmic contact and effective charge extraction. The treatment with O also significantly enhanced the interface adhesion between C60 and SnO, which was confirmed through mechanical delamination tests and further analyzed via X-ray photoelectron spectroscopy (XPS). Consequently, the PCE of -PSCs was 21.5% for untreated samples and 21.9% for those with the O treatment. The -PSCs retained 91.9% of their initial performance under 1 sun illumination maximum power point operation for 2000 h in ambient condition. This work highlights the effectiveness of surface modification at the C60-SnO interfaces as ETLs in -PSCs, leading to enhanced efficiency and stability.

摘要

倒置型钙钛矿太阳能电池(-PSC)已展现出卓越的功率转换效率(PCE)。作为电子传输层(ETL)的C60-SnO双层结构常用于-PSC。然而,众所周知,在热循环下该界面的机械性能相当脆弱。为实现长期稳定性,双层结构之间的界面需进行优化。在此,我们提出一种对C60进行表面处理的方法,以增强ETL双层之间的机械稳健性并促进高效电子传输。通过原子层沉积在经臭氧处理的C60表面沉积SnO,导致孕育时间缩短,这通过每周期生长速率(GPC)的增加得以证明,同时具备适当的欧姆接触和有效的电荷提取。用O进行处理还显著增强了C60与SnO之间的界面附着力,这通过机械分层测试得以证实,并通过X射线光电子能谱(XPS)进一步分析。因此,未处理样品的-PSC的PCE为21.5%,而经O处理的样品为21.9%。在环境条件下,-PSC在1个太阳光照最大功率点运行2000小时后仍保留其初始性能的91.9%。这项工作突出了在-PSC中作为ETL的C60-SnO界面处表面改性的有效性,从而提高了效率和稳定性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验