Norden Tenzin, Martinez Luis M, Tarefder Nehan, Kwock Kevin W C, McClintock Luke M, Olsen Nicholas, Holtzman Luke N, Yeo June Ho, Zhao Liuyan, Zhu Xiaoyang, Hone James C, Yoo Jinkyoung, Zhu Jian-Xin, Schuck P James, Taylor Antoinette J, Prasankumar Rohit P, Kort-Kamp Wilton J M, Padmanabhan Prashant
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
Department of Electrical Engineering, Columbia University, New York, New York 10027, United States.
ACS Nano. 2025 Sep 2;19(34):30919-30929. doi: 10.1021/acsnano.5c06908. Epub 2025 Aug 6.
In addition to a plethora of emergent phenomena, the spatial topology of optical vortices enables an array of applications in optical communications and quantum information science. Multibeam nonlinear optical processes, augmented by optical vortices, are essential in this context, providing robust access to an infinitely large set of quantum states associated with the orbital angular momentum of light. Here, we push the boundaries of vortex nonlinear optics to the ultimate limits of material dimensionality. By exploiting multipulse difference frequency, sum frequency, and four-wave mixing in monolayer quantum materials, we demonstrate their ability to independently control the orbital angular momentum and radial distribution of vortex light-fields in addition to their wavelength. Due to the atomically thin nature of the host crystal, this control spans a broad spectral bandwidth in a highly integrable platform that is unconstrained by the traditional limits of bulk nonlinear optical materials. Our work heralds an innovative path for ultracompact and scalable hybrid nanophotonic technologies empowered by twisted nonlinear light-matter interactions in van der Waals nanomaterials.
除了大量的涌现现象外,光学涡旋的空间拓扑结构还能在光通信和量子信息科学中实现一系列应用。在这种情况下,由光学涡旋增强的多光束非线性光学过程至关重要,它为获取与光的轨道角动量相关的无限大的量子态集提供了可靠途径。在此,我们将涡旋非线性光学的边界推向材料维度的极限。通过利用单层量子材料中的多脉冲差频、和频以及四波混频,我们证明了它们除了能控制涡旋光场的波长外,还能独立控制其轨道角动量和径向分布。由于主体晶体的原子级薄特性,这种控制在一个高度可集成的平台上跨越了宽广的光谱带宽,而不受传统体非线性光学材料限制的约束。我们的工作为超紧凑且可扩展的混合纳米光子技术开辟了一条创新路径,该技术由范德华纳米材料中扭曲的非线性光 - 物质相互作用驱动。