Wang Jian, Liu Jun, Li Shuhui, Zhao Yifan, Du Jing, Zhu Long
Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
Nanophotonics. 2021 Dec 14;11(4):645-680. doi: 10.1515/nanoph-2021-0527. eCollection 2022 Jan.
Orbital angular momentum (OAM), which describes tailoring the spatial physical dimension of light waves into a helical phase structure, has given rise to many applications in optical manipulation, microscopy, imaging, metrology, sensing, quantum science, and optical communications. Light beams carrying OAM feature two distinct characteristics, i.e., inherent orthogonality and unbounded states in principle, which are suitable for capacity scaling of optical communications. In this paper, we give an overview of OAM and beyond in free-space optical communications. The fundamentals of OAM, concept of optical communications using OAM, OAM modulation (OAM modulation based on spatial light modulator, high-speed OAM modulation, spatial array modulation), OAM multiplexing (spectrally efficient, high capacity, long distance), OAM multicasting (adaptive multicasting, -dimensional multicasting), OAM communications in turbulence (adaptive optics, digital signal processing, auto-alignment system), structured light communications beyond OAM (Bessel beams, Airy beams, vector beams), diverse and robust communications using OAM and beyond (multiple scenes, turbulence-resilient communications, intelligent communications) are comprehensively reviewed. The prospects and challenges of optical communications using OAM and beyond are also discussed at the end. In the future, there will be more opportunities in exploiting extensive advanced applications from OAM beams to more general structured light.
轨道角动量(OAM)可将光波的空间物理维度调整为螺旋相位结构,已在光学操控、显微镜、成像、计量学、传感、量子科学及光通信等领域催生了诸多应用。携带OAM的光束具有两个显著特性,即固有正交性和原则上的无界状态,这适用于光通信的容量扩展。在本文中,我们对自由空间光通信中的OAM及其拓展进行概述。全面综述了OAM的基本原理、使用OAM的光通信概念、OAM调制(基于空间光调制器的OAM调制、高速OAM调制、空间阵列调制)、OAM复用(频谱高效、高容量、长距离)、OAM组播(自适应组播、多维组播)、湍流中的OAM通信(自适应光学、数字信号处理、自动对准系统)、OAM之外的结构化光通信(贝塞尔光束、艾里光束、矢量光束)、使用OAM及其拓展的多样且稳健的通信(多场景、抗湍流通信、智能通信)。文末还讨论了使用OAM及其拓展的光通信的前景与挑战。未来,从OAM光束到更一般的结构化光开发广泛的先进应用将有更多机遇。