Karakasis Paschalis, Theofilis Panagiotis, Vlachakis Panayotis K, Apostolos Anastasios, Milaras Nikias, Ktenopoulos Nikolaos, Grigoriou Konstantinos, Klisic Aleksandra, Karagiannidis Efstratios, Fyntanidou Barbara, Patoulias Dimitrios, Antoniadis Antonios P, Fragakis Nikolaos
Second Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece.
Curr Probl Cardiol. 2025 Oct;50(10):103149. doi: 10.1016/j.cpcardiol.2025.103149. Epub 2025 Aug 5.
Cardiac fibrosis is a key pathological substrate that drives diastolic dysfunction, arrhythmogenesis, and heart failure progression across a spectrum of cardiometabolic disorders. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, initially developed for glucose lowering, have demonstrated pleiotropic effects on myocardial structure, notably attenuating fibrotic remodeling. Experimental models of diabetes, hypertension, ischemia, and cardiotoxicity consistently show that SGLT2 inhibitors mitigate interstitial and perivascular fibrosis through modulation of oxidative stress, mitochondrial function, autophagy, and canonical profibrotic signaling cascades, including TGF-β/Smad, STAT3, and mTOR. These actions are largely preserved in non-diabetic settings and appear to extend beyond hemodynamic or glycemic benefits. Clinical data, including cardiac magnetic resonance-based assessments, support the notion of diffuse fibrosis regression, particularly in heart failure with preserved ejection fraction and diabetic cardiomyopathy. Moreover, reductions in serum collagen biomarkers and improvements in myocardial energetics further substantiate their antifibrotic capacity. Nonetheless, fibrosis-specific endpoints remain underrepresented in major cardiovascular outcome trials, and histological validation in human tissue is lacking. Integrating artificial intelligence-driven fibrosis quantification, spatial transcriptomics, and high-resolution imaging may refine phenotyping and enable precision antifibrotic therapy. Whether fibrosis regression translates into durable clinical benefit remains an open question. This review comprehensively synthesizes the mechanistic, translational, and clinical evidence supporting the role of SGLT2 inhibitors as modulators of cardiac fibrosis across diverse cardiovascular disease states.
心脏纤维化是一种关键的病理基础,在一系列心脏代谢紊乱中驱动舒张功能障碍、心律失常和心力衰竭进展。最初为降低血糖而开发的钠-葡萄糖协同转运蛋白2(SGLT2)抑制剂,已显示出对心肌结构的多效性作用,特别是可减轻纤维化重塑。糖尿病、高血压、缺血和心脏毒性的实验模型一致表明,SGLT2抑制剂通过调节氧化应激、线粒体功能、自噬以及包括TGF-β/Smad、STAT3和mTOR在内的经典促纤维化信号级联反应,减轻间质和血管周围纤维化。这些作用在非糖尿病环境中大多得以保留,且似乎超出了血流动力学或血糖方面的益处。包括基于心脏磁共振的评估在内的临床数据支持弥漫性纤维化消退的观点,尤其是在射血分数保留的心力衰竭和糖尿病性心肌病中。此外,血清胶原蛋白生物标志物的降低和心肌能量代谢的改善进一步证实了它们的抗纤维化能力。尽管如此,纤维化特异性终点在主要心血管结局试验中仍未得到充分体现,且缺乏人体组织的组织学验证。整合人工智能驱动的纤维化定量分析、空间转录组学和高分辨率成像可能会优化表型分析,并实现精准抗纤维化治疗。纤维化消退是否能转化为持久的临床益处仍是一个悬而未决的问题。本综述全面综合了支持SGLT2抑制剂作为不同心血管疾病状态下心脏纤维化调节剂作用的机制、转化和临床证据。