Rodríguez-Gallego Víctor, Bucci Paula, Lebrero Raquel, Muñoz Raúl
Institute of Sustainable Processes, University of Valladolid, Paseo del Prado de la Magdalena 3-5, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Paseo del Prado de la Magdalena 3-5, 47011 Valladolid, Spain.
Institute of Sustainable Processes, University of Valladolid, Paseo del Prado de la Magdalena 3-5, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Paseo del Prado de la Magdalena 3-5, 47011 Valladolid, Spain.
Bioresour Technol. 2025 Dec;437:133082. doi: 10.1016/j.biortech.2025.133082. Epub 2025 Aug 5.
Syngas biomethanation-microbial conversion of CO, CO, and H into CH-offers a promising strategy for upcycling gas streams from organic waste gasification. This study investigated the effect of temperature on microbial community enrichment and performance during syngas conversion in continuous bubble column bioreactors operated under mesophilic (30 °C) and thermophilic (50 °C) conditions at increasing H loads. At the highest H load, the CH content in the biogas produced was approximately 84.6 ± 1.4 % under mesophilic conditions and 87.3 ± 1.3 % under thermophilic conditions. The study of the metabolic pathways revealed the dominance of syntrophic acetate oxidation, hydrogenotrophic methanogenesis, homoacetogenesis, and carboxydotrophic acetogenesis in the mesophilic consortium, while hydrogenotrophic methanogenesis and carboxydotrophic hydrogenogenesis dominated in the thermophilic consortium. Similarly, 16S rRNA metataxonomic analysis revealed shifts in microbial diversity, with Methanobacterium, Acetobacterium, and Anaerolineaceae dominating the mesophilic culture, and Methanothermobacter and carboxydotrophic Firmicutes accounting for almost the entire thermophilic community. These findings provide guidance for selecting mesophilic or thermophilic conditions based on preferred metabolic routes, microbial community composition, and process goals.
合成气生物甲烷化——将一氧化碳、二氧化碳和氢气微生物转化为甲烷——为有机废物气化产生的气流升级改造提供了一种很有前景的策略。本研究调查了在中温(30℃)和高温(50℃)条件下,不断增加氢气负荷时,连续鼓泡塔生物反应器中合成气转化过程中温度对微生物群落富集和性能的影响。在最高氢气负荷下,中温条件下产生的沼气中甲烷含量约为84.6±1.4%,高温条件下为87.3±1.3%。代谢途径研究表明,中温菌群中互营乙酸氧化、氢营养型产甲烷、同型产乙酸和羧营养型产乙酸占主导地位,而高温菌群中氢营养型产甲烷和羧营养型产氢占主导地位。同样,16S rRNA宏分类分析揭示了微生物多样性的变化,嗜温培养中甲烷杆菌属(Methanobacterium)、乙酸杆菌属(Acetobacterium)和厌氧绳菌科(Anaerolineaceae)占主导地位,而嗜热栖热菌属(Methanothermobacter)和羧营养型厚壁菌门几乎构成了整个嗜热菌群。这些发现为根据偏好的代谢途径、微生物群落组成和工艺目标选择中温或高温条件提供了指导。