Mäki-Marttunen Tuomo, Kismul Jan Fredrik, Pajo Kadri, Schulz Jan Michael, Manninen Tiina, Einevoll Gaute T, Linne Marja-Leena, Andreassen Ole A, Kotaleski Jeanette Hellgren
Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
Department of Biosciences, University of Oslo, Oslo 0316, Norway.
J Neurosci. 2025 Sep 3;45(36):e0544252025. doi: 10.1523/JNEUROSCI.0544-25.2025.
GABA receptors (GABARs) are an important building block in neural activity. Despite their widely hypothesized role in many basic neuronal functions and mental disorder symptomatology, there is a lack of biophysically and biochemically detailed models of these receptors and the way they mediate neuronal inhibition. Here, we developed a computational model for the activation of GABARs and its effects on the activation of G protein-coupled inwardly rectifying potassium (GIRK) channels as well as inhibition of voltage-gated Ca channels. To ensure the generality of our modeling framework, we fit our model to electrophysiological data including patch-clamp and intracellular recordings that described both pre- and postsynaptic effects of the receptor activation. We validated our model using data on postsynaptic effects of GABARs on layer V pyramidal cell firing activity ex vivo and in vivo and confirmed the strong impact of dendritic GIRK channel activation on the neuron output. Finally, we reproduced and dissected the effects of a knockout of RGS7 (a G protein signaling protein) on CA1 pyramidal cell electrophysiological properties, which shows the potential of our model in generating insights on genetic manipulations of the GABAR system and related genetic variants. Our model thus provides a flexible tool for biochemically and biophysically detailed simulations of different aspects of GABAR activation that can reveal both foundational principles of neuronal dynamics and brain disorder-associated traits and treatment options.
γ-氨基丁酸受体(GABARs)是神经活动的重要组成部分。尽管它们在许多基本神经元功能和精神障碍症状学中有着广泛的假设作用,但目前缺乏关于这些受体及其介导神经元抑制方式的生物物理和生物化学详细模型。在此,我们开发了一个计算模型,用于模拟GABARs的激活及其对G蛋白偶联内向整流钾通道(GIRK)激活以及电压门控钙通道抑制的影响。为确保我们建模框架的通用性,我们将模型与电生理数据进行拟合,这些数据包括膜片钳和细胞内记录,描述了受体激活的突触前和突触后效应。我们利用GABARs对离体和在体V层锥体细胞放电活动的突触后效应数据验证了我们的模型,并证实了树突状GIRK通道激活对神经元输出的强烈影响。最后,我们重现并剖析了RGS7(一种G蛋白信号蛋白)敲除对CA1锥体细胞电生理特性的影响,这显示了我们的模型在深入了解GABAR系统基因操作及相关基因变异方面的潜力。因此,我们的模型为GABAR激活不同方面的生物化学和生物物理详细模拟提供了一个灵活的工具,既可以揭示神经元动力学的基本原理,也可以揭示与脑部疾病相关的特征及治疗方案。