Kushwaha Anoop Kumar, Khadka Rajan, Keblinski Pawel
Center for Materials, Devices, and Integrated Systems (cMDIS), Rensselaer Polytechnic Institute, Troy, New York 12180, United States.
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.
ACS Appl Mater Interfaces. 2025 Aug 20;17(33):47601-47611. doi: 10.1021/acsami.5c08315. Epub 2025 Aug 6.
We used molecular dynamics simulations to investigate the frequency-dependent polarization-electric field (-) response of BaTiO nanofilms for in-plane and out-of-plane field/film orientation. Our study reveals that the polarization direction (in-plane or out-of-plane) of thin films profoundly impacts polarization-switching behavior across a broad frequency range. Out-of-plane polarized films exhibit rather distinct behavior at all frequencies compared to in-plane polarized films and bulk BaTiO. In particular, at the lowest studied frequencies (∼10 GHz), these films behave like paraelectric materials, showing negligible - hysteresis. This behavior is due to depolarizing fields and surface-induced barrierless polarization switching. In contrast, in-plane polarized thin films, as thin as ∼10 nm, exhibit frequency-dependent ferroelectric characteristics and are similar to those characterizing bulk BaTiO. At low frequencies (10-200 GHz), they show well-defined square-type - ferroelectric loops and transition to elliptical shapes with reduced remnant polarization at higher frequencies (500-1000 GHz). Our findings demonstrate that the polarization direction in thin films significantly influences frequency-dependent ferroelectric switching dynamics, offering a pathway for the design of ultrathin ferroelectric materials operating across a wide frequency spectrum.
我们使用分子动力学模拟来研究钛酸钡(BaTiO)纳米薄膜在面内和面外电场/薄膜取向情况下的频率相关极化 - 电场(P - E)响应。我们的研究表明,薄膜的极化方向(面内或面外)在很宽的频率范围内对极化切换行为有深远影响。与面内极化薄膜和块状BaTiO相比,面外极化薄膜在所有频率下都表现出相当不同的行为。特别是,在研究的最低频率(约10 GHz)下,这些薄膜表现得像顺电材料,显示出可忽略不计的电滞回线。这种行为是由于退极化场和表面诱导的无障碍极化切换。相比之下,厚度仅约10 nm的面内极化薄膜表现出频率相关的铁电特性,并且与块状BaTiO的特性相似。在低频(10 - 200 GHz)下,它们显示出明确的方形铁电回线,并在高频(500 - 1000 GHz)下转变为具有减小的剩余极化的椭圆形。我们的研究结果表明,薄膜中的极化方向显著影响频率相关的铁电切换动力学,为设计在宽频谱上工作的超薄铁电材料提供了一条途径。