Liu Xiao, Bao Yu, Zhang Man-Yu, Zhang Han, Niu Meng-Xue, Liu Shu-Jing, Liu Mei-Ying, Huang Meng-Bo, Liu Chao, Yin Weilun, Wang Hou-Ling, Xia Xinli
State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
Nat Commun. 2025 Aug 6;16(1):7266. doi: 10.1038/s41467-025-62448-9.
Soil salinization threatens plant distribution, crop yields, and ecosystem stability. In response, plants activate potassium (K) signaling to maintain Na⁺/K⁺ balance, though the mechanisms regulating K⁺ uptake under salt stress remain poorly understood. This study identified two splice variants of the bZIP49 transcription factor in Populus tomentosa: unspliced "bZIP49L" and spliced "bZIP49S". bZIP49S, the active form under salt stress, reduces salt tolerance when overexpressed, while bzip49cr knockout enhances it. The serine/arginine-rich splicing factor SC35 was identified as a regulator of bZIP49 mRNA splicing through a self-developed experimental method, and its overexpression enhances salt sensitivity. bZIP49S inhibits the K transporter AKT1 by binding its promoter, and AKT1 loss in bzip49cr mutant limits K influx and reduces salt tolerance. Under salt stress, the E2 ubiquitin-conjugating enzyme UBC32 promotes SC35 degradation via ubiquitination, lowering bZIP49S levels and alleviating the inhibition of AKT1. This facilitates K⁺ uptake, restores Na⁺/K⁺ balance, and improves salt tolerance. Our study highlights the critical role of bZIP49 splicing and the "UBC32-SC35-bZIP49-AKT1" module in modulating Na⁺/K⁺ balance under salt stress in poplar.
土壤盐渍化威胁着植物分布、作物产量和生态系统稳定性。作为响应,植物激活钾(K)信号传导以维持Na⁺/K⁺平衡,尽管盐胁迫下调节K⁺吸收的机制仍知之甚少。本研究鉴定了毛白杨中bZIP49转录因子的两个剪接变体:未剪接的“bZIP49L”和剪接的“bZIP49S”。bZIP49S是盐胁迫下的活性形式,过表达时会降低耐盐性,而bzip49cr敲除则会增强耐盐性。通过自主研发的实验方法,富含丝氨酸/精氨酸的剪接因子SC35被鉴定为bZIP49 mRNA剪接的调节因子,其过表达会增强盐敏感性。bZIP49S通过结合其启动子抑制钾转运体AKT1,bzip49cr突变体中AKT1的缺失限制了钾流入并降低了耐盐性。在盐胁迫下,E2泛素结合酶UBC32通过泛素化促进SC35降解,降低bZIP49S水平并减轻对AKT1的抑制。这促进了K⁺吸收,恢复了Na⁺/K⁺平衡,并提高了耐盐性。我们的研究突出了bZIP49剪接和“UBC32-SC35-bZIP49-AKT1”模块在调节杨树盐胁迫下Na⁺/K⁺平衡中的关键作用。