Naveenkumar Ramachandiran, Sivakumari Govindarajan, Senthilvelan Sambandam, Karthikeyan Balakrishnan
Department of Chemistry, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu 608 002, India.
Langmuir. 2025 Aug 19;41(32):21663-21683. doi: 10.1021/acs.langmuir.5c02637. Epub 2025 Aug 7.
In this study, a sustainable green synthesis route was developed to fabricate CuO, Co-doped CuO (Co-CuO), and a novel Activated Biocarbon-Co-doped CuO (ABC-Co-CuO) nanocomposite using (lotus) leaf extract. The key novelty of this study is the integrated use of lotus leaf extract as a bioreductant and lotus fiber biomass as a precursor of activated biocarbon (ABC) to create a multifunctional hybrid material. The primary objective was to design green and cost-effective nanocomposites with improved catalytic, electrochemical, and biological performance for multifunctional applications. ABC derived from lotus biomass significantly improved the physicochemical properties of the nanocomposites by increasing the surface reactivity and charge carrier mobility. The synthesized materials were comprehensively characterized using P-XRD, FE-SEM, FT-IR, HR-TEM, PL, UV-vis DRS, XPS, and BET analysis. XRD confirmed the monoclinic phase of CuO, while FE-SEM revealed mixed cubic and spherical morphology. The band gap was reduced from 3.34 eV (CuO) to 2.10 eV (ABC-Co-CuO), indicating enhanced visible light absorption due to Co doping and carbon integration. In the UV photocatalytic degradation of Brilliant Green dye (BG), ABC-Co-CuO (95.41%) showed a superior degradation rate compared to Co-CuO (75.95%) and CuO (63.62%). Electrochemical studies confirmed the superior performance of ABC-Co-CuO, exhibiting a high specific capacitance of 600 F/g at 10 mV s and a low solution resistance of 2.15 Ω, compared to 260 F/g and 3.02 Ω, respectively, for pure CuO. These results indicate that the composite materials have enhanced charge storage capacity and improved ionic conductivity, suggesting its potential in energy storage and electrocatalysis. The material also exhibited broad-spectrum antibacterial activity and antioxidant capacity comparable to those of ascorbic acid. This study introduces a new biomass-derived nanomaterial platform for multifunctional applications in environmental remediation, biomedical, and energy technologies, in line with sustainable development goals.
在本研究中,开发了一种可持续的绿色合成路线,以使用荷叶提取物制备氧化铜(CuO)、钴掺杂氧化铜(Co-CuO)和新型活性生物碳-钴掺杂氧化铜(ABC-Co-CuO)纳米复合材料。本研究的关键新颖之处在于综合使用荷叶提取物作为生物还原剂以及荷叶纤维生物质作为活性生物碳(ABC)的前体,以制备多功能混合材料。主要目标是设计出绿色且具有成本效益的纳米复合材料,其具有改进的催化、电化学和生物学性能,可用于多功能应用。源自荷叶生物质的ABC通过提高表面反应性和电荷载流子迁移率,显著改善了纳米复合材料的物理化学性质。使用P-XRD、FE-SEM、FT-IR、HR-TEM、PL、UV-vis DRS、XPS和BET分析对合成材料进行了全面表征。XRD证实了CuO的单斜相,而FE-SEM显示出立方和球形的混合形态。带隙从3.34 eV(CuO)降低到2.10 eV(ABC-Co-CuO),表明由于钴掺杂和碳整合,可见光吸收增强。在紫外光催化降解亮绿染料(BG)过程中,ABC-Co-CuO(95.41%)显示出比Co-CuO(75.95%)和CuO(63.62%)更高的降解率。电化学研究证实了ABC-Co-CuO的优异性能,在10 mV s时表现出600 F/g的高比电容和2.15 Ω的低溶液电阻,相比之下,纯CuO的比电容分别为260 F/g,溶液电阻为3.02 Ω。这些结果表明复合材料具有增强的电荷存储能力和改善的离子导电性,表明其在能量存储和电催化方面的潜力。该材料还表现出与抗坏血酸相当的广谱抗菌活性和抗氧化能力。本研究引入了一种新的生物质衍生纳米材料平台,用于环境修复、生物医学和能源技术中的多功能应用,符合可持续发展目标。