Suppr超能文献

一种基于乳房X线摄影和磁共振成像的便捷模型,用于术前鉴别乳腺叶状肿瘤和纤维腺瘤。

A convenient model based on mammography and magnetic resonance imaging for preoperative differentiation of breast phyllodes tumors and fibroadenomas.

作者信息

Ma Xiaowen, Li Jinhui, Hu Feixiang, Huang Yan, Xiao Qin, Peng Weijun, Gu Yajia

机构信息

Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.

Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.

出版信息

Gland Surg. 2025 Jul 31;14(7):1306-1317. doi: 10.21037/gs-2025-145. Epub 2025 Jul 28.

Abstract

BACKGROUND

Differentiation between breast phyllodes tumors (PTs) and fibroadenomas (FAs) remains a key clinical challenge, which is critical for formulating clinical treatment strategies. This study aimed to establish a fusion model based on mammography (MG) and magnetic resonance imaging (MRI) for the preoperative differentiation of PTs and FAs.

METHODS

The clinical data, MG images, and magnetic resonance (MR) images of patients with breast FAs treated in Fudan University Shanghai Cancer Center from October 2019 to December 2020, as well as patients with PTs treated from January 2011 to December 2020, were retrospectively collected. Univariate and multivariate logistic regression analyses were conducted to select independent factors and to construct a diagnostic model to differentiate PTs and FAs. The diagnostic performance of the model was evaluated using the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA).

RESULTS

A total of 147 patients with FAs and 138 patients with PTs were included in this study. Patient age, maximum diameter of mass, density on MG images, lobulation on MR images, and time-intensity curve (TIC) were independent factors contributing to the differential diagnosis. Finally, the fusion model showed satisfactory discrimination [area under the curve (AUC) 0.90, 95% confidence interval (CI): 0.86-0.94] and calibration. DCA indicated good clinical benefit, as indicated by most values being within threshold probabilities.

CONCLUSIONS

Breast MG and MRI findings help differentiate between FAs and PTs preoperatively. The multimodal fusion model was clinically efficacious and thus useful for accurate clinical diagnosis and treatment.

摘要

背景

乳腺叶状肿瘤(PTs)与纤维腺瘤(FAs)的鉴别仍然是一项关键的临床挑战,这对于制定临床治疗策略至关重要。本研究旨在建立一种基于乳腺钼靶摄影(MG)和磁共振成像(MRI)的融合模型,用于PTs和FAs的术前鉴别。

方法

回顾性收集2019年10月至2020年12月在复旦大学附属上海肿瘤医院接受治疗的乳腺FAs患者以及2011年1月至2020年12月接受治疗的PTs患者的临床资料、MG图像和磁共振(MR)图像。进行单因素和多因素逻辑回归分析以选择独立因素,并构建鉴别PTs和FAs的诊断模型。使用受试者工作特征(ROC)曲线、校准曲线和决策曲线分析(DCA)评估该模型的诊断性能。

结果

本研究共纳入147例FAs患者和l38例PTs患者。患者年龄、肿块最大直径、MG图像密度、MR图像分叶情况以及时间-强度曲线(TIC)是有助于鉴别诊断的独立因素。最终,融合模型显示出令人满意的区分度[曲线下面积(AUC)为0.90,95%置信区间(CI):0.86 - 0.94]和校准度。DCA表明具有良好的临床效益,大多数值在阈值概率范围内。

结论

乳腺MG和MRI表现有助于术前鉴别FAs和PTs。多模态融合模型在临床上有效,因此有助于准确的临床诊断和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a595/12322753/18f679350985/gs-14-07-1306-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验