文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

卵巢癌中的蛋白质组学改变——利用人工智能和基于SHAP的生物标志物解释预测残留疾病状态

Proteomic alterations in ovarian cancer-Predicting residual disease status using artificial intelligence and SHAP-based biomarker interpretation.

作者信息

Yasar Seyma, Melekoglu Rauf

机构信息

Department of Biostatistics, and Medical Informatics, Medicine Faculty, Inonu University, Malatya, Türkiye.

Department of Obstetrics and Gynecology, Faculty of Medicine, Inonu University, Malatya, Türkiye.

出版信息

Front Med (Lausanne). 2025 Jul 23;12:1562558. doi: 10.3389/fmed.2025.1562558. eCollection 2025.


DOI:10.3389/fmed.2025.1562558
PMID:40771481
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12325313/
Abstract

INTRODUCTION: High-grade serous ovarian cancer (HGSOC) is the most aggressive and prevalent subtype of ovarian Treatment outcomes are significantly influenced by residual disease status following neoadjuvant chemotherapy (NACT). Predicting residual disease before surgery can improve patient stratification and personalized treatment strategies. METHODS: This study analyzed pre-NACT proteomic data from 20 HGSOC patients treated with NACT. Patients were categorized into two groups based on surgical outcomes: no residual disease (R0, = 14) and suboptimal residual disease (R1, = 6). From an initial set of 97 differentially expressed proteins, 18 significant proteins were selected using the BORUTA feature selection method. Three machine learning models-Random Forest (RF), Support Vector Machine (SVM), and Bootstrap Aggregation with Classification and Regression Trees (BaggedCART)-were developed and evaluated. RESULTS: The Random Forest model achieved the best performance with an AUC of 0.955, accuracy of 0.830, sensitivity of 0.904, specificity of 0.763, and F1-score of 0.839. SHapley Additive exPlanations (SHAP) analysis identified five proteins (P48637, O43491, O95302, Q96CX2, and P49189) as the most influential predictors of residual disease. These proteins, including glutathione synthetase and peptidyl-prolyl cis-trans isomerase FKBP9, are associated with chemotherapy resistance mechanisms. DISCUSSION: The findings demonstrate the potential of integrating proteomic data with machine learning techniques for predicting surgical outcomes in HGSOC. Identified protein signatures may serve as valuable biomarkers for anticipating NACT response and informing clinical decision-making, ultimately contributing to personalized patient care.

摘要

引言:高级别浆液性卵巢癌(HGSOC)是卵巢癌中最具侵袭性和最常见的亚型。新辅助化疗(NACT)后的残留病灶状态对治疗结果有显著影响。术前预测残留病灶可改善患者分层和个性化治疗策略。 方法:本研究分析了20例接受NACT治疗的HGSOC患者的NACT前蛋白质组学数据。根据手术结果将患者分为两组:无残留病灶(R0,n = 14)和次优残留病灶(R1,n = 6)。从最初的97种差异表达蛋白质中,使用BORUTA特征选择方法选择了18种显著蛋白质。开发并评估了三种机器学习模型——随机森林(RF)、支持向量机(SVM)和分类与回归树装袋法(BaggedCART)。 结果:随机森林模型表现最佳,曲线下面积(AUC)为0.955,准确率为0.830,灵敏度为0.904,特异性为0.763,F1分数为0.839。SHapley值相加解释(SHAP)分析确定了五种蛋白质(P48637、O43491、O95302、Q96CX2和P49189)是残留病灶最具影响力的预测因子。这些蛋白质,包括谷胱甘肽合成酶和肽基脯氨酰顺反异构酶FKBP9,与化疗耐药机制有关。 讨论:研究结果表明,将蛋白质组学数据与机器学习技术相结合,在预测HGSOC手术结果方面具有潜力。识别出的蛋白质特征可能作为预测NACT反应和指导临床决策的有价值生物标志物,最终有助于个性化患者护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56bf/12325313/55b6e0af600a/fmed-12-1562558-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56bf/12325313/55b6e0af600a/fmed-12-1562558-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56bf/12325313/55b6e0af600a/fmed-12-1562558-g0001.jpg

相似文献

[1]
Proteomic alterations in ovarian cancer-Predicting residual disease status using artificial intelligence and SHAP-based biomarker interpretation.

Front Med (Lausanne). 2025-7-23

[2]
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.

Cochrane Database Syst Rev. 2022-9-26

[3]
Supervised Machine Learning Models for Predicting Sepsis-Associated Liver Injury in Patients With Sepsis: Development and Validation Study Based on a Multicenter Cohort Study.

J Med Internet Res. 2025-5-26

[4]
Machine learning and SHAP value interpretation for predicting the response to neoadjuvant chemotherapy and long-term clinical outcomes in Chinese female breast cancer.

Ann Med. 2025-12

[5]
Neoadjuvant chemotherapy before surgery versus surgery followed by chemotherapy for initial treatment in advanced epithelial ovarian cancer.

Cochrane Database Syst Rev. 2025-2-10

[6]
Interpretable Machine Learning for Serum-Based Metabolomics in Breast Cancer Diagnostics: Insights from Multi-Objective Feature Selection-Driven LightGBM-SHAP Models.

Medicina (Kaunas). 2025-6-19

[7]
Chemotherapy versus surgery for initial treatment in advanced ovarian epithelial cancer.

Cochrane Database Syst Rev. 2012-8-15

[8]
Machine learning analysis of survival outcomes in breast cancer patients treated with chemotherapy, hormone therapy, surgery, and radiotherapy.

Sci Rep. 2025-7-10

[9]
Machine learning prediction of metabolic dysfunction-associated fatty liver disease risk in American adults using body composition: explainable analysis based on SHapley Additive exPlanations.

Front Nutr. 2025-6-30

[10]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

本文引用的文献

[1]
The Role of Tumor Biomarkers in Tailoring the Approach to Advanced Ovarian Cancer.

Int J Mol Sci. 2024-10-19

[2]
Targeting BRAF pathway in low-grade serous ovarian cancer.

J Gynecol Oncol. 2024-7

[3]
Cancer statistics, 2024.

CA Cancer J Clin. 2024

[4]
Artificial intelligence in cancer diagnosis: Opportunities and challenges.

Pathol Res Pract. 2024-1

[5]
Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment.

J Hematol Oncol. 2023-11-27

[6]
Artificial intelligence in cancer diagnosis and therapy: Current status and future perspective.

Comput Biol Med. 2023-10

[7]
A diabetes prediction model based on Boruta feature selection and ensemble learning.

BMC Bioinformatics. 2023-6-1

[8]
Machine learning-based integration develops an immune-related risk model for predicting prognosis of high-grade serous ovarian cancer and providing therapeutic strategies.

Front Immunol. 2023

[9]
Pathways to ovarian cancer diagnosis: a qualitative study.

BMC Womens Health. 2022-11-4

[10]
Proteomic alterations associated with residual disease in neoadjuvant chemotherapy treated ovarian cancer tissues.

Clin Proteomics. 2022-10-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索