Yasar Seyma, Melekoglu Rauf
Department of Biostatistics, and Medical Informatics, Medicine Faculty, Inonu University, Malatya, Türkiye.
Department of Obstetrics and Gynecology, Faculty of Medicine, Inonu University, Malatya, Türkiye.
Front Med (Lausanne). 2025 Jul 23;12:1562558. doi: 10.3389/fmed.2025.1562558. eCollection 2025.
INTRODUCTION: High-grade serous ovarian cancer (HGSOC) is the most aggressive and prevalent subtype of ovarian Treatment outcomes are significantly influenced by residual disease status following neoadjuvant chemotherapy (NACT). Predicting residual disease before surgery can improve patient stratification and personalized treatment strategies. METHODS: This study analyzed pre-NACT proteomic data from 20 HGSOC patients treated with NACT. Patients were categorized into two groups based on surgical outcomes: no residual disease (R0, = 14) and suboptimal residual disease (R1, = 6). From an initial set of 97 differentially expressed proteins, 18 significant proteins were selected using the BORUTA feature selection method. Three machine learning models-Random Forest (RF), Support Vector Machine (SVM), and Bootstrap Aggregation with Classification and Regression Trees (BaggedCART)-were developed and evaluated. RESULTS: The Random Forest model achieved the best performance with an AUC of 0.955, accuracy of 0.830, sensitivity of 0.904, specificity of 0.763, and F1-score of 0.839. SHapley Additive exPlanations (SHAP) analysis identified five proteins (P48637, O43491, O95302, Q96CX2, and P49189) as the most influential predictors of residual disease. These proteins, including glutathione synthetase and peptidyl-prolyl cis-trans isomerase FKBP9, are associated with chemotherapy resistance mechanisms. DISCUSSION: The findings demonstrate the potential of integrating proteomic data with machine learning techniques for predicting surgical outcomes in HGSOC. Identified protein signatures may serve as valuable biomarkers for anticipating NACT response and informing clinical decision-making, ultimately contributing to personalized patient care.
引言:高级别浆液性卵巢癌(HGSOC)是卵巢癌中最具侵袭性和最常见的亚型。新辅助化疗(NACT)后的残留病灶状态对治疗结果有显著影响。术前预测残留病灶可改善患者分层和个性化治疗策略。 方法:本研究分析了20例接受NACT治疗的HGSOC患者的NACT前蛋白质组学数据。根据手术结果将患者分为两组:无残留病灶(R0,n = 14)和次优残留病灶(R1,n = 6)。从最初的97种差异表达蛋白质中,使用BORUTA特征选择方法选择了18种显著蛋白质。开发并评估了三种机器学习模型——随机森林(RF)、支持向量机(SVM)和分类与回归树装袋法(BaggedCART)。 结果:随机森林模型表现最佳,曲线下面积(AUC)为0.955,准确率为0.830,灵敏度为0.904,特异性为0.763,F1分数为0.839。SHapley值相加解释(SHAP)分析确定了五种蛋白质(P48637、O43491、O95302、Q96CX2和P49189)是残留病灶最具影响力的预测因子。这些蛋白质,包括谷胱甘肽合成酶和肽基脯氨酰顺反异构酶FKBP9,与化疗耐药机制有关。 讨论:研究结果表明,将蛋白质组学数据与机器学习技术相结合,在预测HGSOC手术结果方面具有潜力。识别出的蛋白质特征可能作为预测NACT反应和指导临床决策的有价值生物标志物,最终有助于个性化患者护理。
Cochrane Database Syst Rev. 2022-9-26
Cochrane Database Syst Rev. 2025-2-10
Cochrane Database Syst Rev. 2012-8-15
Int J Mol Sci. 2024-10-19
J Gynecol Oncol. 2024-7
CA Cancer J Clin. 2024
Pathol Res Pract. 2024-1
J Hematol Oncol. 2023-11-27
Comput Biol Med. 2023-10
BMC Bioinformatics. 2023-6-1
BMC Womens Health. 2022-11-4