Suppr超能文献

一种用于区分机械人工主动脉瓣梯度升高原因的预测模型。

A predictive model for differentiating causes of elevated mechanical prosthetic aortic valve gradient.

作者信息

Guler Gamze Babur, Guler Arda, Topel Cagdas, Tanboga Ibrahim Halil, Cicek Mehmet, Aydin Sinem, Yilmaz Mustafa, Atmaca Sezgin, Efe Yusuf, Pay Dilara, Sadıkoğulları Kadir, Melikoglu Erhan, Turkmen Irem, Karakurt Huseyin, Guner Ahmet, Guler Ekrem, Erturk Mehmet

机构信息

Department of Cardiology, University of Health Sciences, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Halkali, Istanbul, Turkey.

Department of Radiology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.

出版信息

Int J Cardiovasc Imaging. 2025 Aug 7. doi: 10.1007/s10554-025-03490-y.

Abstract

In managing aortic prosthetic valves (APVs), increased transvalvular gradients present significant diagnostic challenges, often requiring advanced multimodality imaging (MMI). Predictive models can offer valuable insights in resource-limited settings. This study aimed to develop a predictive model to differentiate between causes of high mechanical prosthetic aortic valve gradients the causes of high gradients in mechanical prosthetic aortic valves. This retrospective study, conducted at a tertiary cardiology center, included 159 patients with high-gradient mechanical prosthetic aortic valves admitted between February 2020 and April 2024. Clinical evaluations involved included detailed examinations, laboratory findings, time in therapeutic range (TTR), and MMI techniques. Among the patients, 102 had patient-prosthesis mismatch (PPM), 22 had thrombus, and 35 had pannus-related high-gradients. A multivariate multinomial logistic regression model was used to predict the diagnostic groups. The most significant variables, according to partial chi-square values, were APV opening angle, acceleration time (AT), APV age (> 5 years), APV size, and effective TTR. APV opening angle and AT explained 65% of the outcome variation. The model's macro-average multi-class AUC was 0.95, with individual AUC values of 0.98, 0.94, and 0.94 for mismatch PPM, thrombus, and pannus, respectively. The polytomous discrimination index (PDI) was 0.87 overall. This study developed a predictive model to distinguish between PPM, thrombus, and pannus formation in high-gradient mechanical aortic valves. Valve opening angle and acceleration time were the most significant predictors. The model supports the use of simple tools like echocardiography and cinefluoroscopy, especially in settings without access to advanced imaging.

摘要

在管理人工主动脉瓣膜(APV)时,跨瓣压差增加带来了重大的诊断挑战,通常需要先进的多模态成像(MMI)技术。预测模型可以在资源有限的情况下提供有价值的见解。本研究旨在开发一种预测模型,以区分机械人工主动脉瓣膜高梯度的原因。这项回顾性研究在一家三级心脏病中心进行,纳入了2020年2月至2024年4月期间收治的159例高梯度机械人工主动脉瓣膜患者。临床评估包括详细检查、实验室检查结果、治疗范围内时间(TTR)和MMI技术。在这些患者中,102例存在患者-人工瓣膜不匹配(PPM),22例有血栓形成,35例有瓣周组织相关的高梯度。使用多变量多项逻辑回归模型预测诊断分组。根据偏卡方值,最显著的变量是APV开放角度、加速时间(AT)、APV使用年限(>5年)、APV尺寸和有效TTR。APV开放角度和AT解释了65%的结果变异。该模型的宏观平均多类别AUC为0.95,PPM、血栓和瓣周组织的个体AUC值分别为0.98、0.94和0.94。总体多分类判别指数(PDI)为0.87。本研究开发了一种预测模型,以区分高梯度机械主动脉瓣膜中的PPM、血栓形成和瓣周组织形成。瓣膜开放角度和加速时间是最显著的预测因素。该模型支持使用超声心动图和荧光透视等简单工具,尤其是在无法进行先进成像的情况下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验