Suita Yusuke, Bright Hardy, Pu Yuan, Toruner Merih Deniz, Idehen Jordan, Tapinos Nikos, Singh Ritambhara
Laboratory of Cancer Epigenetics and Plasticity, Department of Neurosurgery, Brown University, Providence, Rhode Island, United States of America.
Data Science Institute, Brown University, Providence, Rhode Island, United States of America.
PLoS Comput Biol. 2025 Aug 7;21(8):e1012272. doi: 10.1371/journal.pcbi.1012272. eCollection 2025 Aug.
Epigenetic mechanisms play a crucial role in driving transcript expression and shaping the phenotypic plasticity of glioblastoma stem cells (GSCs), contributing to tumor heterogeneity and therapeutic resistance. These mechanisms dynamically regulate the expression of key oncogenic and stemness-associated genes, enabling GSCs to adapt to environmental cues and evade targeted therapies. Importantly, epigenetic reprogramming allows GSCs to transition between cellular states, including therapy-resistant mesenchymal-like phenotypes, underscoring the need for epigenetic-targeting strategies to disrupt these adaptive processes. Understanding these epigenetic drivers of gene expression provides a foundation for novel therapeutic interventions aimed at eradicating GSCs and improving glioblastoma outcomes. Using machine learning (ML), we employ cross-patient prediction of transcript expression in GSCs by combining epigenetic features from various sources, including ATAC-seq, CTCF ChIP-seq, RNAPII ChIP-seq, H3K27Ac ChIP-seq, and RNA-seq. We investigate different ML and deep learning (DL) models for this task and ultimately build our final pipeline using XGBoost. The model trained on one patient generalizes to other 11 patients with high performance. Notably, H3K27Ac alone from a single patient is sufficient to predict gene expression in all 11 patients. Furthermore, the distribution of H3K27Ac peaks across the genomes of all patients is remarkably similar. These findings suggest that GSCs share a common distributional pattern of enhancer activity characterized by H3K27Ac, which can be utilized to predict gene expression in GSCs across patients. In summary, while GSCs are known for their transcriptomic and phenotypic heterogeneity, we propose that they share a common epigenetic pattern of enhancer activation that defines their underlying transcriptomic expression pattern. This pattern can predict gene expression across patient samples, providing valuable insights into the biology of GSCs.
表观遗传机制在驱动转录表达和塑造胶质母细胞瘤干细胞(GSCs)的表型可塑性方面发挥着关键作用,导致肿瘤异质性和治疗抗性。这些机制动态调节关键致癌基因和干性相关基因的表达,使GSCs能够适应环境线索并逃避靶向治疗。重要的是,表观遗传重编程使GSCs能够在细胞状态之间转变,包括抗治疗的间充质样表型,这突出了需要表观遗传靶向策略来破坏这些适应性过程。了解这些基因表达的表观遗传驱动因素为旨在根除GSCs和改善胶质母细胞瘤治疗结果的新型治疗干预提供了基础。我们使用机器学习(ML),通过整合来自各种来源的表观遗传特征,包括ATAC-seq、CTCF ChIP-seq、RNAPII ChIP-seq、H3K27Ac ChIP-seq和RNA-seq,对GSCs中的转录表达进行跨患者预测。我们研究了用于此任务的不同ML和深度学习(DL)模型,并最终使用XGBoost构建了我们的最终管道。在一名患者上训练的模型能够高效地推广到其他11名患者。值得注意的是,仅来自一名患者的H3K27Ac就足以预测所有11名患者的基因表达。此外,所有患者基因组中H3K27Ac峰的分布非常相似。这些发现表明,GSCs共享以H3K27Ac为特征的增强子活性的共同分布模式,可用于预测跨患者的GSCs中的基因表达。总之,虽然GSCs以其转录组和表型异质性而闻名,但我们提出它们共享增强子激活的共同表观遗传模式,该模式定义了其潜在的转录组表达模式。这种模式可以预测跨患者样本的基因表达,为GSCs的生物学提供有价值的见解。