Suppr超能文献

基于家族的持续学习,用于具有图卷积网络(GCN)和视觉Transformer(ViT)的联邦框架中的多域模式分析。

Family-based continual learning for multi-domain pattern analysis in federated frameworks with GCN and ViT.

作者信息

Iqbal Saeed, Zhong Xiaopin, Khan Muhammad Attique, Wu Zongze, Alhammadi Dina Abdulaziz, Liu Weixiang

机构信息

College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China.

Center of AI, Prince Mohammad Bin Fahd University, Alkhobar, Kingdom of Saudi Arabia.

出版信息

Neural Netw. 2025 Jul 29;192:107920. doi: 10.1016/j.neunet.2025.107920.

Abstract

Continual Learning (CL) and Federated Learning (FL) integration have attracted a lot of interest in dynamic and decentralized areas where client data distributions show a lot of unpredictability, such as industrial imaging, satellite images, medical imaging, and robotic vision. Catastrophic forgetting, non-IID data, and the requirement for effective model updates across clients with restricted data privacy are issues that traditional FL approaches find difficult to handle. These limits impede the development of robust models that can generalize across a range of applications and adjust to changing data and resource limitations. In this research, we offer a novel framework for FL (FedCL) that combines Graph Convolutional Networks (GCNs) and Vision Transformers (ViTs) with Family-based CL (FCL). Our approach reduces catastrophic forgetting and allows the model to be dynamically adjusted to various client data distributions by introducing a hierarchical, three-tiered model architecture made up of the Parent Model (Learning Model), Grandparent Model (Stable Model), and Child Model (Plastic Model). The system utilizes the power of GCN for capturing structural links in patient data and ViT's self-attention mechanism for fast feature extraction, assuring stable performance across varied datasets. Knowledge Distillation Loss (KDL) and surrogate ratios are added to the model to improve learning and facilitate efficient information transfer. We assess our proposed approach on several benchmark datasets, such as FashionMNIST, MedMNIST, and DigitMNIST, and validate it using the MVTeC AD and Vision dataset under several criteria, including F1-score (97.0 %), accuracy (97.6 %), precision (97.2 %), Learning Performance (LP - 97.3 %), and Anomaly Identification Performance (AIP - 96.5 %). Our findings show that the suggested FCL framework considerably lowers catastrophic forgetting across domains with different data properties while outperforming conventional FL techniques in terms of model adaptability, data privacy preservation, and computational efficiency. The suggested approach offers a viable path forward for the development of federated CL in intricate, practical applications. The code and data supporting the findings of this study are available at the GitHub link: FedViTCL.

摘要

持续学习(CL)与联邦学习(FL)的集成在动态和分散领域引起了广泛关注,这些领域中客户端数据分布具有很大的不可预测性,如工业成像、卫星图像、医学成像和机器人视觉。灾难性遗忘、非独立同分布数据以及在数据隐私受限的客户端之间进行有效模型更新的要求,是传统联邦学习方法难以处理的问题。这些限制阻碍了能够在一系列应用中进行泛化并适应不断变化的数据和资源限制的强大模型的开发。在本研究中,我们提供了一种新颖的联邦学习框架(FedCL),它将图卷积网络(GCN)和视觉Transformer(ViT)与基于家族的持续学习(FCL)相结合。我们的方法通过引入由父模型(学习模型)、祖父母模型(稳定模型)和子模型(可塑性模型)组成的分层三层模型架构,减少了灾难性遗忘,并使模型能够动态适应各种客户端数据分布。该系统利用GCN的能力来捕获患者数据中的结构链接,并利用ViT的自注意力机制进行快速特征提取,确保在不同数据集上的稳定性能。向模型中添加知识蒸馏损失(KDL)和替代率以改进学习并促进高效的信息传递。我们在几个基准数据集上评估了我们提出的方法,如FashionMNIST、MedMNIST和DigitMNIST,并在包括F1分数(97.0%)、准确率(97.6%)、精确率(97.2%)、学习性能(LP - 97.3%)和异常识别性能(AIP - 96.5%)等多个标准下,使用MVTeC AD和视觉数据集对其进行了验证。我们的研究结果表明,所提出的FCL框架在不同数据属性的领域中显著降低了灾难性遗忘,同时在模型适应性、数据隐私保护和计算效率方面优于传统的联邦学习技术。所提出的方法为在复杂的实际应用中开发联邦持续学习提供了一条可行的前进道路。支持本研究结果的代码和数据可在GitHub链接:FedViTCL上获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验