Suppr超能文献

用于机器学习辅助多重抗生素检测的超灵敏光催化表面增强拉曼光谱平台:基于NiFeO微玫瑰和光还原银纳米颗粒

Ultra-sensitive and photocatalytic SERS platforms for machine learning assisted multiplex antibiotic detection using NiFeO microroses and photoreduced Ag nanoparticles.

作者信息

Arun Kumar Kalingarayanpalayam Matheswaran, Wang Tzyy-Jiann, Joseph Anthuvan Allen, Chang Yu-Hsu

机构信息

Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan; Institute of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.

Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.

出版信息

Sci Total Environ. 2025 Aug 6;997:180182. doi: 10.1016/j.scitotenv.2025.180182.

Abstract

Dispersion and accumulation of antibiotics in the environment have harmed the ecosystem and cause serious antibiotic resistance, which has a significant impact on human health. This study presents the construction of a highly sensitive and photocatalytic surface enhanced Raman spectroscopy (SERS) platform with the multiplex antibiotic detection capability by the machine learning technique. The developed SERS platform utilizes the Ag/NiFeO microcomposite composed of highly active NiFeO microroses with oxygen vacancies and closely adjacent ultra-thin petals on which photoreduced silver nanoparticles are densely distributed. As a binary transition metal oxide semiconductor, NiFeO has the conduction band edge near the middle point between the Fermi level of silver and the lowest unoccupied molecular orbital (LUMO) of nitrofurantoin to strengthen photoinduced charge transfer for Raman signal enhancement. Its medium bandgap facilitates optical excitation to increase the amount of electrons accumulated in the LUMO of nitrofurantoin. The Ag/NiFeO microcomposite owns superior detection performance, including an ultra-low limit of detection of 3.18 × 10 M, a substantial enhancement factor of 2.08 × 10, high uniformity, high reproducibility, and satisfactory storage stability. Its ultra-high sensitivity can be attributed to the action of numerous electromagnetic hotpots between Ag NPs, the effective charge transfer from the microcomposite to the analyte, and the synergistic action of electromagnetic and charge transfer mechanisms. Multiple antibiotic discrimination for nitrofurantoin, nitrofurazone, and furazolidone, is performed by the machine learning algorithms, including decision tree, support vector machine, adaptive boosting, k-nearest neighbors, and random forest, with the best accuracy of 99.42 %. The photocatalytic degradation mechanism of Ag/NiFeO microcomposite is verified by the radical scavenger studies. The proposed SERS sensing platform provides an effective and promising strategy for the trace-level detection of multiple antibiotics in food and environmental samples.

摘要

抗生素在环境中的扩散和积累已经对生态系统造成了危害,并导致了严重的抗生素耐药性,这对人类健康产生了重大影响。本研究通过机器学习技术构建了一个具有多重抗生素检测能力的高灵敏度光催化表面增强拉曼光谱(SERS)平台。所开发的SERS平台利用了由具有氧空位的高活性NiFeO微玫瑰和紧密相邻的超薄花瓣组成的Ag/NiFeO微复合材料,光还原的银纳米颗粒密集分布在这些花瓣上。作为一种二元过渡金属氧化物半导体,NiFeO的导带边缘接近银的费米能级与呋喃妥因的最低未占据分子轨道(LUMO)之间的中点,以增强光致电荷转移,从而增强拉曼信号。其适中的带隙有利于光激发,增加了呋喃妥因LUMO中积累的电子数量。Ag/NiFeO微复合材料具有优异的检测性能,包括超低检测限3.18×10⁻⁸ M、高达2.08×10⁶的增强因子、高均匀性、高重现性和令人满意的储存稳定性。其超高灵敏度可归因于Ag NPs之间众多电磁热点的作用、从微复合材料到分析物的有效电荷转移以及电磁和电荷转移机制的协同作用。通过决策树、支持向量机、自适应增强、k近邻和随机森林等机器学习算法对呋喃妥因、呋喃西林和呋喃唑酮进行多重抗生素鉴别,最佳准确率为99.42%。通过自由基清除剂研究验证了Ag/NiFeO微复合材料的光催化降解机制。所提出的SERS传感平台为食品和环境样品中多种抗生素的痕量检测提供了一种有效且有前景的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验