Carr Alex V, Baliga Nitin S, Diener Christian, Gibbons Sean M
Institute for Systems Biology, Seattle, WA, USA; Molecular Engineering Program, University of Washington, Seattle, WA, USA.
Institute for Systems Biology, Seattle, WA, USA; Molecular Engineering Program, University of Washington, Seattle, WA, USA; Department of Biology, University of Washington, Seattle, WA, USA; Department of Microbiology, University of Washington, Seattle, WA, USA; Lawrence Berkeley National Lab, Berkeley, CA, USA.
Cell Syst. 2025 Aug 20;16(8):101367. doi: 10.1016/j.cels.2025.101367. Epub 2025 Aug 6.
Clostridioides difficile (C. difficile) colonizes up to 40% of community-dwelling adults without causing disease but can eventually lead to infection (C. difficile infection [CDI]). There has been a lack of focus on how to prevent colonization and facilitate the successful clearance of C. difficile prior to the emergence of CDI. We show that microbial community-scale metabolic models (MCMMs) accurately predict C. difficile colonization susceptibility in vitro and in vivo, offering mechanistic insights into microbiota-specific interactions involving metabolites like succinate, trehalose, and ornithine. MCMMs reveal distinct C. difficile metabolic niches-two growth-associated and one non-growth-associated-observed across 15,204 individuals from five cohorts. We further demonstrate that MCMMs can predict personalized C. difficile growth suppression by a probiotic cocktail designed to replace fecal microbiota transplants (FMTs) for the treatment of recurrent CDI, and we identify new probiotic targets for future validation. MCMMs represent a powerful framework for predicting pathogen colonization and assessing probiotic efficacy across diverse microbiota contexts. A record of this paper's transparent peer review process is included in the supplemental information.
艰难梭菌(Clostridioides difficile,简称C. difficile)可在高达40%的社区居住成年人中定植,但不引发疾病,不过最终可能导致感染(即艰难梭菌感染,简称CDI)。此前一直缺乏对如何预防定植以及在CDI出现之前促进艰难梭菌成功清除的关注。我们发现,微生物群落尺度代谢模型(MCMMs)能够在体外和体内准确预测艰难梭菌的定植易感性,为涉及琥珀酸、海藻糖和鸟氨酸等代谢物的微生物群特异性相互作用提供了机制性见解。MCMMs揭示了艰难梭菌不同的代谢生态位——两个与生长相关的和一个与非生长相关的——在来自五个队列的15204名个体中观察到。我们进一步证明,MCMMs能够预测一种旨在替代粪便微生物群移植(FMTs)用于治疗复发性CDI的益生菌组合对艰难梭菌生长的个性化抑制作用,并且我们确定了未来有待验证的新的益生菌靶点。MCMMs是一个强大的框架,可用于预测病原体定植并评估不同微生物群背景下的益生菌功效。本文透明的同行评审过程记录包含在补充信息中。